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ABSTRACT 

Laminated sandwich plate constructions are extensively used in various aerospace and industrial 

applications. These plates offer advantages when compared with plates made of conventional 

materials due to their high specific modulus and high specific strength. Also, sandwich plates 

can be tailored to the designer's requirements. However, these plates are prone to many defects. 

Specifically, their resistance to impact is a major concern. Impact can significantly reduce the 

strength and stiffness of the structure. Studying various aspects that can be used to improve the 

resistance to impact of sandwich plates is the objective of this project. Two different sandwich 

models are studied. First, the sandwich plate is made of conventional honeycomb construction, 

while the second plate is made of z-pins. Experiments are conducted and, based on the 

experimental observations, a phenomenological analytical approach is developed. Issues studied 

include the determination of impact induced damage initiation, types of damage modes, 

propagation of damage modes, and the effect of damage on the overall performance of the 

sandwich plates. 
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I. INTRODUCTION 

Composite sandwich constructions are being increasingly used in various aerospace applications 

because of their high specific strength and specific modulus. Typically, a sandwich construction 

consists of stiff face sheets to carry the axial loads and a core for bearing the shear and 

compressive loads. In general, material used for the core is light of weight and not so strong in 

flexural stiffness but provides a significant shear stiffness. The core also serves the purpose of 

keeping the face sheets away from the bending neutral axis of the structure, there by improving 

the bending resistance of the face sheets. Different material and geometric configurations can be 

used for the core. In this project, two different core materials were used. In the first sandwich 

construction, a core made of Nomax honey comb was used while in the second sandwich 

construction, a z-pin sandwich construction was incorporated. 

These sandwich constructions are prone to many defects such as delaminations, core 

crushing etc. Causes for such defects are numerous. Defects or damage caused by the low 

velocity impact is one of the most commonly encountered practical problem as related to 

aerospace applications. Thus, the present report is focused on studying the effects of impact 

induced damages on sandwich panels. Both experimental and analytical investigations are 

carried out in a phenomenological way. Due to the availability of the material, Nomax 

honeycomb sandwich panels are extensively tested and the lessons learned while testing are 

extended to the testing of z-pin sandwich panels. The phenomena that are observed in the 

experimentation are modeled adequately using 'in-house' developed analytical tools in addition 

to commercial software tools. 

Many people contributed in this work at various stages along with the main authors of 

this report. Dr. Victor Birman, a Professor at University of Missouri was involved in the initial 

'back of the envelop calculations' (this work was published as a technical report AFIT/ENY/TR- 

95-04). Major Eric Herup participated (as a part of his Ph.D. dissertation) in the testing and 

analysis of Nomax honeycomb sandwich panels. Dr. William Baker, Associate Professor in the 

Mathematics Department of AFIT is a co-author in the development of simple dynamic 

analytical models. Mr. Victor Perel, as a graduate student, helped in modeling the z-pin 

sandwich panels using I-DEAS. Mr. Galen Deeds, a Wright State University student, worked on 



the analysis of z-pin sandwich panels and compared these results with the experimentation 

results considering static loading conditions. Dr. Uday Vaidya, Associate Professor of 

Mechanical Engineering at Tuskegee University was involved in the experimentation of z-pin 

sandwich panels and carried out further post impact NDE studies. Dr. Lloyd Eldred, a NRC 

fellow helped in the optimization of sandwich panels using ASTROS. All these people's 

contribution is appreciated and resulted in various publications. The work performed under this 

project is divided into two major sections- Experimentation and Finite Element Model. 
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CHAPTER II: EXPERIMENTATION 

In this chapter, experimental work carried out as part of this project is described. Two different 

sandwich constructions are considered and work carried out for each of the sandwich 

constructions is described in three technical papers. The first technical paper was accepted for 

publication in the Journal of Composite Science and Technology. The second paper was 

published in the proceedings of the 38 th AIAA/ASME/ASCE/AHS Structural Dynamics and 

Materials conference, 1997 held at Orlando, Florida. The third technical paper is to be published 

in the proceedings of the ASME winter annual meeting, held at Dallas, TX. All the three papers 

are enclosed in the report as attachments. A brief description related to the content of each paper 

is provided. Details of this description can be obtained by following the papers. 

The title of the first paper is " Low Velocity Impact Damage Initiation in Graphite 

Epoxy/Nomex Honeycomb Sandwich Plates". The contributing authors for this paper include 

Major Eric J. Hemp and Professor A.N. Palazotto. As the title indicates, this paper is about 

conventional Nomex sandwich plates. Face plates used for the sandwich plate are made up of 

graphite epoxy. Five different thicknesses of face plates are considered. The thickness variation 

is achieved by changing the number of layers used for the face plate. All the plates considered 

have [0/90]s layer combinations. Static and low velocity impact tests were carried out to 

characterize the damage initiation as a function of face plate thickness and loading rate. Two 

different test systems were used to provide the impact energy. In the first test system, a drop 

weight initiated the impact induced damage. As a second system, a pendulum test was used. In 

both test systems, force versus time histories were measured. It can be observed that damage 

within the plate changes the plate stiffness and hence its response to a load. A correlation is 

observed between the load history and the damage initiation. Based on this measured data, 

energy - time history is determined and damage initiation as a function of impact energy, is 

determined. Some of the problems characterized by the use of drop weight test system and 

solutions to these problems are discussed. For example, the mass used for the tup should be 

significantly less when compared with the overall mass of the plate in order to minimize the 

influence of the impactor dynamics on the test results. Thus, the manufacturer supplied tup of 

151 gm mass is replaced by a manufactured tup of 8 gms and is used for testing the sandwich 
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plates. The effect of the influence of the larger tup mass is discussed. By plotting impact energy 

as a function of absorbed energy, the energy level at which the damage initiates is determined. 

Based on the experience of using both the test systems (drop weight and pendulum), it was 

concluded that the pendulum test system has some advantages over the drop weight. Static 

indentation tests were performed and force versus displacement data is collected from these test. 

These force displacement histories were compared for both low velocity tests and the static 

indentation tests. Based on the comparison, it was concluded that when the thickness of the face 

sheet is small, low velocity impact test results closely match those of static indentation test 

results, and hence an assumption that the low velocity impact system can be considered as quasi- 

static is valid. However, for thicker face plates, these two phenomena differ. It was observed that 

damage initiation occurs at lower load levels in static tests when compared with low velocity 

impact tests. All these specimens are C-scanned before and after the impact event to study the 

size of the damage due to the impact. The type of damage seems to be the same in both the static 

indentation tests and low velocity impact tests. Detailed description about each of these 

observations can be found in Attachment I. 

Based on the experience gained on the low velocity impact studies on the Nomex sandwich 

panels, experiments were designed to study the low velocity impact characteristics of Z pin 

sandwich panels. For these experiments, only the pendulum test system was used. Two different 

pin orientations were considered ( 10 degrees and 20 degrees). Again, force versus time histories 

were measured and based on this data, energy versus time histories were determined. Damage 

initiation was obtained from the plot of impact energy versus the absorbed energy. The impact 

energy level at which there was a significant absorbed energy was defined as the damage 

initiation energy. Results were again compared with static indentation tests. As before, it was 

observed that the damage initiates at a lower level in static tests when compared with the low 

velocity impact tests. Due to the unavailability of specimens, only one face plate thickness was 

considered in all the experimentation. Results are discussed in Attachment II. 

In the third technical paper, post impact studies were carried out. The authors for the third paper 

include Dr. U.V. Vaidya, Dr. A.N. Palazotto and Dr. L.N.B. Gummadi. In this work, 

nondestructive evaluation (NDE) tests were carried out for the z-pin sandwiches after the low 

velocity impact testing. These    tests include Ultrasonic C-scan testing, Compression After 
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Impact testing, Acoustic emission testing and vibration testing. C-scan tests indicated that a 

series of pins are undergoing a push through phenomena accompanied by coalescence of 

delaminations between the adjacent pins. The compression after impact tests indicated that for 

the specimens with multi impacts, the final failure load is decreased. For example, for a 10 

degree oriented pin, the failure load after the first impact is 3949 kgm while the failure load after 

the four repeated impact events reduced the failure strength to 3291 kgm, a drop of 16.6 percent 

in the failure strength. In the Acoustic emission testing, energy, amplitude and the event 

duration of the Acoustic emission events are monitored during the compression after impact 

testing. Results indicated that matrix microcracking and localized debonding of the pin from the 

face sheet with accompanying ply delamination may be the first failure phenomena. It should be 

remembered that this failure phenomena does not result in a drop in the load deflection 

characteristics. First major failure phenomena that reduces the strength seems to be the pin push 

through. Also, all these specimens are vibration tested (tested for natural frequencies). From 

these tests, it can be observed that the impact event associated with a major failure (such as pin 

push through) is associated with a reduction in natural frequencies and an increase in the 

damping. Details of all these tests and results are provided in Attachment III. 



ATTACHMENT I 

LOW VELOCITY IMPACT DAMAGE INITIATION IN GRAPHITE-EPOXY/NOMEX 

HONEYCOMB SANDWICH PLATES 
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LOW-VELOCITY IMPACT DAMAGE INITIATION IN GRAPHITE- 

EPOXY/NOMEX HONEYCOMB SANDWICH PLATES 

Eric J. Henip & Anthony N. Palazotto 

Department of Aeronautics and Astronautics, Air Force Institute of Technology, 

Wright-Patterson AFB, OH 45433, USA 

Abstract 

Low-velocity impact and static indentation tests on sandwich plates composed of 4- to 48-ply 

graphite-epoxy cross-ply laminate facesheets and Nomex honeycomb cores are performed to characterize 

damage initiation as a function of facesheet thickness and loading rate. Force histories during low-velocity 

impact are measured using an instrumented impactor and integrated to produce energy histories. Energy 

histories are shown to reveal damage initiation. Static indentation tests show damages that are similar to 

those produced by low-velocity impact The force at which damage initiates is shown to be lower for static 

tests than for low-velocity impact tests, and differences between equilibrium curves for the two types of 

loading are discussed. The difference between static and low-velocity impact tests is greater for plates with 

thicker facesheets. This may indicate a limitation of the applicability of the common assumption that low- 

velocity impact is a quasi-steady process. 

Keywords: low-velocity impacuB, delarrrination, instrumented impactor, honeycomb, composite sandwich 

plate:C. 

1. INTRODUCTION 

Experimental studies of the impact force history resulting from low-velocity impact on composite 

plates have revealed that the impact force is not a smooth function of time.1"* A significant amount of 



research has been performed in this area, and several survey papers" summarize the previous work. Load 

drops on the impact force versus time plot are often taken to be indicative of strain energy release due to 

damage propagation within the plate. An objective of this investigation is to relate force history to damage. 

To do this, the temporal fidelity of the measured impact force must be sufficient to resolve individual load 

drops associated with damage growth. Since impact force may be influenced by impactor dynamics, 

characterization of the instrumented impactor test system is first addressed (Section 2.1). When an 

instrumented impactor system is used for impacts at energy levels low enough to avoid significant damage 

to the plate, calculated absorbed energies indicative of damage have still been observed.1-4 A correction for 

this is discussed in Section 2.2. An experimental investigation of low-velocity impact to laminated 

composite sandwich plates is discussed in Section 3. Square, flat, sandwich panels of uniform in-plane size 

and honeycomb core thickness and varying facesheet thickness were subjected to a transverse load applied 

at their center by a steel spherical indentor (tup). Both quasi-static indentation and dynamic impact were 

considered and compared. Contact force was monitored throughout the event through the use of an 

instrumented impactor. 

1.1 Objectives 

1.1.1   Understand damage initiation and progress. 

The experimental parameter space was designed to reveal the course of events which transpire when a 

composite sandwich plate is subjected to low-velocity impact. Loads applied, measurements taken, 

calculations made, and both non-destructive and destructive inspections after impact were all tailored to 

maximize the insights available into these events. These insights, in turn, can be used in an attempt to 

identify general trends and, ultimately, guide subsequent research aimed at controlling and reducing the 

degradation of residual properties of impacted composite sandwich structures. 



1.1.2 Relate damage to load history. 

Instrumented impact« tests arc attractive because of the simplicity of the procedure and the relative 

swiftness with which a large number of impact events can be performed. The principal measurement in 

instrumented impactor tests is load as a function of time. This load history is used to integrate the tup 

equations of motion to infer the displacement and absorbed energy of the plate. To measure damage within 

the plate, more time- and labor-intensive procedures such as C-scan, radiography, and photomicrography are 

generally employed. It is desirable to reduce or eliminate these procedures if the needed information 

available by them can be obtained by other means. 

Damage within the plate changes the plate stiffness and hence its response to load. In this way damage 

can be expected to show up as an equilibrium change which may be observable in the load history. One 

objective of the experimental portion of the current work was to correlate the observed load history to the 

internal damage. This correlation has the potential to greatly reduce the cost of testing these structures 

and/or increase the number of impact events (hence increase the resolution or parameter envelope) any 

given test program can provide to the existing database. 

1.1.3 Validate quasi-static assumption. 

An important simplification very common to low-velocity impact testing and modeling is that the 

damage depends not upon the impact energy per se, but upon the peak load reached in the process of 

transferring that energy. If this is the case, static tests and static analyses can be expected to adequately 

simulate the impact event The objective here was to validate this simplification and (within the context of 

the parameters varied) define the boundaries of the usefulness of quasi-static assumptions. 



12 Approach 

1.2.1 Multiple facesheet lay-ups. 

One of the very obvious decisions required of a designer of a composite sandwich plate structure is 

how thick to make the facesheets. Bending stiffness will be a principal consideration here. Damage 

resistance will be another important and potentially constraining consideration. For this reason, a range of 

facesheet thicknesses were tested, providing impact resistance data as a function of facesheet thickness. In 

an effort to limit the number of parameters being varied, the core thickness was held constant for all tests. 

1.2.2 Static and dynamic testing. 

Although load histories for the "static" and dynamic events are on time scales several orders of 

magnitude different, load versus displacement (equilibrium) curves for the two types of events can be 

compared directly. Differences between these curves provide insight into the dynamics of the impact event 

and the errors likely to be present in static analyses or simulations. Both static and dynamic tests were 

performed in an effort to mark off that portion of the parameter space in which time-dependence of the 

process of damage should not be ignored. The principal tool used to make this judgment is the load versus 

displacement curve. If the process were indeed quasi-static, one would expect the load versus displacement 

curve to be independent of the speed at which the load was applied. Where inertial stiffening is significant, 

the dynamic equilibrium curve should have a greater slope than the static. Where dynamic effects are not 

important to the damage process, such characteristics as peak load before damage, the magnitude of the load 

drop associated with a particular damage, stiffness after damage, and energy absorbed by the damage 

process should all be independent of the loading rate. Thus, static and dynamic test data are compared and 

implications for analyses based upon quasi-static assumptions are discussed. 



1.2.3 Instrumented impactor. 

A load cell mounted within the impactor/indentor provided load histories for all of the events. As 

discussed in Section 2, a reduced-mass tup tip effectively removed tup dynamics from the measurements 

providing excellent temporal fidelity in the load history (and hence velocity, energy, and displacement 

histories). 

1.2.4 Post-impact C-scan and photomicrographs. 

After the load was removed, damage present in the specimens was observed through the use of 

ultrasonic time-of-flight C-scans. Focused pressure waves were directed transverse to the top facesheet and 

echoes were timed and recorded as the focal point was traversed over the surface of the specimen. The fust 

reflection (from the plate surface) was used to set the observation window (in time) so that the time of any 

subsequent returns was indicative of their depth relative to the first surface. By this process, delaminations 

are observed as returns and are recorded on a two-dimensional color map indicating, for each point, the 

depth of the delamination nearest the top surface of the specimen. On the C-scans, the color at any point 

represents the time of the first observed reflection after the reflection from the top surface. This reflection 

corresponds to the shallowest (i.e. nearest the top surface) delamination present at the given point. Thus, 

only the uppermost delamination was recorded at any given point. If, for example, at some point within the 

specimen there were three delaminations located at ply interfaces 1, 3, and 5 (numbering interfaces 

sequentially from the top of the plate), then the C-scan would show a color at that point representing the 

depth of interface 1. The existence of the other two delaminations would not be observable at that point in 

the C-scan. Neither fiber failure, matrix cracking, nor core crushing were observable by C-scans. To see 

these modes of damage, several specimens were sliced through their thickness in several equally spaced 

planes perpendicular to the fiber direction. The exposed surfaces were stabilized with an epoxy potting 

compound, polished, and viewed under visible reflected light at various magnifications. This process 



allowed the viewer to record (photographically and by sketch) the damage present in any of the slice planes. 

The majority of the cross-section data used in this research was observed by Harrington.1 Damage observed 

was in the forms of matrix cracks, delaminations, and crushed core walls. 

1 INSTRUMENTED IMPACTOR SYSTEM CHARACTERIZATION 

2.1  Force Temporal Fidelity 

The fundamental characteristic of an instrumented impactor impact test system is that the contact 

force between the impactor and the target is measured by means of a load cell built into the impactor. The 

load cell actually measures the force between two portions of the impactor, the main mass, mx and the tip 

mass, m2. Typically, the main mass is much greater than the tip mass, and the load cell is very stiff 

compared to the target, so the dynamics of the impactor (vibration of the tip mass against the load cell 

stiffness) are neglected. Neglecting impactor dynamics has been shown to lead to significant force and 

energy history errors for some choices of system parameters.4 In particular, the tup mass ratio, (mi+m^m,, 

must be near unity to avoid significant errors. In order to make the tup mass ratio near unity, the main mass 

must be much larger than the tip mass. Since the main mass is effectively sized by the chosen test system 

and the impact energies required, the tip mass must be as small as practical in order to minimize the 

influence of impactor dynamics on the test results. This idea is illustrated graphically in figure 1 which 

shows the response of an instrumented impactor load cell (load range 0-15 kN) when subjected to an axial 

impulse load from a hammer strike. With the manufacturer-supplied 151.4 gm tup tip, a large portion of the 

impact energy is evidently transferred to the first axial vibration mode of the tup and slowly dissipated by 

light damping. Thus the tup "rings" as seen in the lowest curve. Though it was not measured, one must 

conclude that a significant portion of the impact energy was not returned to die hammer which lost contact 

with the tup after the first half-cycle. In contrast, the center curve shows the impulse response with the tup 

tip removed. The much higher fidelity impulse response indicates that very little energy is absorbed by tup 



vibrations. The upper most curve in figure 1 shows the response with a much lighter tup tip fabricated for 

the current work. It is evident that the new tup tip approximates the response of no tup tip. 

The effect of the reduced-mass tup tip on the fidelity of the force history in an actual composite 

sandwich plate impact event is illustrated in figure 2. In that figure the large amplitude oscillations present 

in the 151.4 gm tup tip data are not actually loads seen by the plate, but are load cell loads induced by the 

dynamics of the tup. The two different 8.2 gm tests (#1 and #2) are shown to indicate the variation of 

response from one event to another. 

As seen in figure 2, reducing the tup tip mass by changing from the manufacturer-supplied 151.4 gm 

tip to the 8.2 gm tip significantly enhances the temporal fidelity of the load histories available from 

instrumented impactor tests. The improvement is most valuable for more flexible (low range) load cells and 

manifests itself most strongly following a load drop like those often seen in composite impact tests. The 

lesson here is that the force oscillations following a load drop in an instrumented impactor test can be 

significantly influenced by instrumentation dynamic response and should not be blindly attributed to the 

dynamics of the specimen. For the load cell used for the impact portion of this work (15kN), a relatively 

low-frequency, relatively high-force axial vibration mode exists when the manufacturer-supplied tup tip is 

used. This mode contributes significant error to the observed load history. Reducing the tup tip mass 

presumably increases the frequency of the error but reduces its magnitude to the point that it can not be 

observed in the impulse response of the system. Without this improvement the tup tip dynamics can 

effectively mask the high frequency response of the plate (figure 2). With this minor system improvement 

there is hope of being able to correlate load history with damage. Without it, after the first load drop the 

noise overwhelms the signal and it appears very unlikely that such a correlation can be made. It should be 

emphasized that, for a given load cell, it is the tup mass ratio, and not the tup tip mass per se, that dictates 

the strength of the tup dynamics (force noise). With the 15 kN load cell and the 3.5 kg main mass, m,, used 



in this work, the 151.4 gm tup tip provided a tup mass ratio of 1.043 while the 8.2 gm tup tip reduced the 

ratio to 1.002. The stiffness of the load cell must also be considered. Higher stiffness is better from the point 

of view of temporal resolution, but a tradeoff is made here in that the higher the stiffness, the poorer the load 

resolution due to the fact that the force is measured by internal strain gages and strain is inversely 

proportional to stiffness. When load resolution requirements dictate a low stiffness load cell be used, 

minimizing the tup mass ratio is shown to significantly improve the temporal fidelity of the load data 

produced by an instrumented impactor test system 

22 Energy Calculations 

In instrumented impactor tests, impact energy and specimen absorbed energy are often used to 

characterize the event. Impact energy is the kinetic energy of the impactor (tup) at the instant that it strikes 

the specimen. Impact energy is usually controlled by varying the mass of the tup, m^, and the height from 

which it is dropped (or swung in the case of a pendulum impactor). Thus the potential energy of the tup 

before release is an upper bound for its kinetic energy at the time of impact Energy losses during the 

acceleration of the tup (sliding friction at the guide rails, air resistance, etc.) are typically accounted for by 

measuring the velocity of the tup just prior to impact, V^O). Impact energy is then calculated by the 

relation, 

Impact energy = ^E-V^O)2 (1) 

The impact event transfers energy between the initially moving tup and the initially stationary specimen. 

Specimen absorbed energy (usually called "absorbed energy") is that net portion of the impact energy at any 

given time, which has been transferred to the specimen. It includes the strain energy of the specimen, the 

kinetic energy of the specimen, the total strain energy released from the specimen up to that time through 

damage progression, and frictional losses in the contact area and at the boundaries of the plate. Frictional 

losses at guide rails and air resistance during the impact event are usually assumed small, but they are 



actually implicitly included in the absorbed energy. The absorbed energy is calculated by the kinetic energy 

loss of the tup in which the tup velocity, V^t), is integrated from the contact force, F(t), by Newton's 

second law, that is, 

"hup'0 

and the kinetic energy loss of the tup, called the "absorbed energy" or often just "energy" and labeled E(t), 

is then 

^(0 = ^(Vmp(0)2-Vn(p(0
2) (3) 

Thus, absorbed energy is a calculated, not directly measured, quantity. Its accuracy depends on the accuracy 

of the measured velocity V^(0), the measured contact force F(t), the measured mass m^ and the neglected 

frictional losses during the impact event. Figure 3 is a typical load and absorbed energy history from a low- 

velocity impact event in which the specimen was a composite sandwich plate and the force was measured 

using an instrumented impactor (in this case drop weight) with a tup mass ratio of 1.043. After the event of 

figure 3, no damage was detected in the specimen. 

In figure 3 the absorbed energy for an impact event which produced no damage (as detected by C- 

scan1) indicates that a significant amount of energy is not returned to the tup (absorbed energy does not 

return to zero when force does). The calculated residual energy for this test was a large portion (more than 

60 percent) of the impact energy (the maximum on the energy plot). That is, if the absorbed energy in the 

plate is correct, the undetectable damage and other losses absorb the majority of the impact energy. It has 

been demonstrated4 that this is not the case. The force shown in figure 3 is in error due to the large tup tip 

mass. A correction for the tup tip mass was developed (reference 4). This correction is applied to an 

analytical model of the impact event of figure 3 with the result shown in figure 4. It is obviously desireable 



to eliminate the error, rather than correct for it. This was accomplished for the current work by reducing the 

tup tip mass ratio from 1.043 to 1.002 by fabricating a lightweight tup tip. With the lightweight tup tip, the 

correction was no longer needed. 

3. EXPERIMENTAL INVESTIGATION 

3.1 Parameters 

The panels consisted of AS4/3501-6 graphite-epoxy face sheets secondarily bonded to 1.27 cm thick 

HRH-10-1/8-9.0 Nomex honeycomb core using two layers of FM300-2 film adhesive. Typical honeycomb 

core material and a completed sandwich structure are shown in figure 5. The face sheets had the following 

stacking sequences: [0/90]$, [0/90]*. [0/90k. [0/90]gs, and [<V90]IJS. In the following, sandwich structures 

made from these facesheets are referred to as 4-, 8-, 16-, 32-, and 48-ply, respectively. Each of the panels 

from which the individual specimens were cut were C-scanned to ensure no significant flaws were present 

before impact. The specimen size was 17.8 cm by 17.8 cm and they were restrained in a steel fixture 

simulating simple supports1 having dimensions of 12.7cm by 12.7 cm The same restraint fixture was used 

for both static and dynamic tests. All tests were performed at room temperature. The impactor/indentor 

radius was 1.27 cm and constant for all tests. For pendulum tests the tup mass was 3.48 kg while that for 

drop weight tests was 3.49 kg. Tup tip mass for the drop weight tests was 8.2 gm while that for the 

pendulum tests was 12.3 gm Drop height (or pendulum swing) was varied to provide impact energies 

between 0.06 and 25 joules. For each facesheet thickness the impact energies were chosen to span the 

damage initiation energy (threshold) and extend for at least a factor of two above it. The entire impact test 

matrix is given in figure 6. 
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32 Static Indentation Test System 

A 9 kN load cell was used to measure load for the 4-, 8-, 16-, and 32-ply specimens and a 90 kN load 

cell was used for the 48-ply specimens. A displacement transducer (LVDT) was used to measure the 

displacement of the lower surface of the plate. The static test system is shown schematically in figure 7. The 

principal features are: 1) a stiff crosshead driven down by precisely controlled screws; 2) a stiff load cell 

mounted under the crosshead which measures the force between the crosshead and the specimen; 3) a 12.7 

mm radius hardened steel ball bearing between the load cell and the specimen; 4) a stiff restraint fixture to 

hold the specimen; 5) an LVDT mounted under the specimen; 6) a control system; 7) signal conditioners; 

and 8) a digital data acquisition system 

33 Dynamic Impact Test Systems 

Force and energy histories are part of the reduced data generally available from instrumented impactor 

impact test systems. To facilitate comparisons with static test data as well as static analysis data, force 

versus tup displacement plots were also generated. Integration of the tup equations of motion produced the 

tup displacement. 

In the early portion of the testing, a commercially available drop weight impact testing system was 

used to impact 8- and 16-ply sandwich specimens. The minimum energy for which data could be obtained 

with this system was -05 J. This minimum was found to be unacceptable because the initiation of damage 

in the 8-ply specimens occurred at less than this value. In order to obtain data for lower energies, the 

remainder of the test matrix was filled using the same load cell, but mounting it in a pendulum impact test 

system The minimum energy at which the pendulum system could be used (without reducing tup mass) was 

found to be less than 0.05 J and this was low enough to resolve the initiation of damage in the 8-ply as well 

as the 4-ply specimens. 
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3.3.1 Drop weight test system. 

The drop weight test system used for all of the 16-ply and part of the 8-ply portion of the test matrix is 

shown schematically in figure 8. Its principal features are: 1) a stiff, guided, near-free-falling mass; 2) a stiff 

load cell mounted under the falling mass which measures the force between the mass and the specimen; 3) a 

spherical 12.7 mm radius hardened steel tup tip between the load cell and the specimen; 4) a light gate to 

measure tup velocity just prior to impact; 5) a stiff restraint fixture to hold the specimen; 6) a control system 

including brakes to prevent multiple hits; and 7) a digital data acquisition system 

3.3.2 Pendulum test system. 

The pendulum impact test system had several advantages over the drop weight test system Not only 

could it reliably take data at an order of magnitude smaller impact energy for the same tup mass, but also it 

had the singular advantage of measuring both impact velocity and rebound velocity. Thus absorbed energy 

was effectively measured, providing a check for the integrations of the tup equation of motion. In addition, 

the fact that these velocity measurements were taken at the bottom of the pendulum swing (when the tup 

acceleration is near zero) provided a greater degree of consistency in the impact velocity measurements than 

was available from the drop weight system The handicap that the drop weight system had in this regard was 

that the acceleration of the tup at the time that impact velocity was measured was not zero, in fact the 

acceleration was constant during the whole drop. Thus, any small variability in the location of the velocity 

measurement light gate with respect to the specimen had a significantly greater effect on the drop weight 

impact velocity calculation than it would have had on the pendulum impact velocity calculation. In short, 

the pendulum was a more forgiving system 

The pendulum impact test system was used for all of the 4-, 32-, and 48-ply tests and the low-energy part of 

the 8-ply tests. The system is shown schematically in figure 9. Its principal features are: 1) four 3.6 m kevlar 

strings positioned so as to provide a 3.37 m effective pendulum arm with a stable planar swing and a 
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consistent impact point; 2) a stiff suspended mass; 3) a stiff load cell mounted on the swinging mass which 

measures the force between the mass and the specimen; 4) a spherical 12.7 mm radius hardened steel tup tip 

between the load cell and the specimen; 5) a light gate to measure tup velocity just prior to and just after 

impact; 6) a stiff restraint fixture to hold the specimen; and 7) a digital data acquisition system. 

3.3.3 Impact test calculations. 

Other differences aside, the calculations required for the pendulum and drop weight data were nearly 

identical. The fact that the pendulum is horizontal and the drop weight system was vertical did not influence 

the calculations. In the first place, the deflections were small, so the change in tup potential energy while in 

contact with the plate was neglected. In the second place, the acceleration due to gravity was assumed to be 

small compared to the acceleration produced by the impact force. Both of these higher order effects would 

have had a much greater influence on the drop weight calculations than on the pendulum The important 

calculations for the dynamic impact tests are equations 1 through 3 and the displacement. Determining 

displacement as a function of time required an additional time integration of the tup equation of motion. The 

coordinate system is chosen such that the initial tup displacement, #0), is zero. Displacement calculation is 

important because load versus displacement is used to compare static and dynamic test data in order to 

judge the applicability of the quasi-static assumption. The tup displacement, %t), is integrated from the tup 

velocity, V^t), by the relation, 

8(t) = l'0Var(T)dr+6(0) (4) 

For impact tests then, F(t) is measured and absorbed energy (£(0) and displacement (5(f)) are calculated 

while for "static" tests F(t) and 8(t) are both measured and E(t) is simply the product of the two. 
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3.4 Test Results 

As indicated by the impact test matrix given in figure 6, two parameters were varied for the dynamic 

portion of this research. These are, facesheet thickness (or number of plies) and impact energy. For each 

event, a number of measures can provide insight into the physics. The measures found most prominently in 

the literature are force history, absorbed energy history, and C-scans. In addition to these, other measures 

were found to be quite useful in the present research. These include absorbed energy at the end of the event, 

photomicrographs, and most significantly load-displacement curves. In discussing the results of a test matrix 

varying facesheet thickness and impact energy, one could choose to take one facesheet thickness at a time 

and show the effect of different energies on each measure, or one energy at a time and discuss the effect of 

facesheet thickness on each measure. In contrast to these admittedly logical presentation orders, the 

organization of the following was chosen because it enhances the communication of the key ideas gleaned 

from these data while minimizing the repetition of words. For this presentation, the measures (not the 

experimental parameters) provide the top level discussion points and the effects of first facesheet thickness 

and then impact energy are discussed in relation to each measure. 

3.4.1 Absorbed energy. 

In figures 10 through 14 absorbed energy has been nondimensionalized by impact energy and plotted 

versus impact energy. Several important trends are observable in figures 10 through 14. Fust, for all of the 

pendulum data (figures 10, 11,13, and 14) at least 15 percent of the impact energy was not returned to the 

tup. This was die case even for impact energies low enough to produce no detectable damage. The second 

trend that should be observed is that in each figure a threshold impact energy is evident below which the 

absorbed energy is relatively small and above which a significantly larger portion of the impact energy is 

absorbed. This threshold impact energy corresponds precisely with the damage initiation impact energy 

determined by post-impact inspections of the specimens. That is, no damage was detected in any specimens 
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impacted with less than the threshold impact energy, and damage was detected in every specimen impacted 

with more than the threshold impact energy. Absorbed energy appears to be a reliable indicator of damage. 

This is to be expected since the strain energy release associated with damage progression is an energy loss 

to the system What is interesting is how sharply the threshold can be seen as each plot approximates a step 

function. The third important trend is that, after the damage initiates, the absorbed energy increases linearly 

with impact energy. This trend can be seen in figures 10 through 14 by observing that for impact energies 

above the threshold impact energy the absorbed energy/impact energy ratio is independent of impact energy. 

This constant ratio implies, for example, that doubling the impact energy will simply double the absorbed 

energy. A fourth trend is that the absorbed energy/impact energy ratio for damaged specimens seems to 

increase with facesheet thickness. That is, as facesheet thickness increases, the energy absorbed in the 

process of damage also increases. An interpretation of this may be, damage is delayed (i.e. threshold impact 

energy is increased) by increasing facesheet thickness but at the cost of making the damage more severe 

when threshold is breached. 

3.4.2 Force history. 

Force histories for several impact energies near the threshold impact energy for each facesheet thickness are 

shown in figures 15 through 19. In each of those figures the facesheet thickness is held constant and the 

impact energy is varied. Some general trends which can be seen in these data are: 

1. At impact energies below the threshold impact energy, the loading and unloading is relatively 

smooth and not unlike a half sine wave with a superposed smaller-ampUtude higher-frequency 

secondary sine wave. Increasing the facesheet thickness increases the prominence of the secondary sine 

wave. These observations support the conjecture that the secondary sine wave may be attributable to 

specimen dynamics. The specimen mass, and therefore the maximum specimen kinetic energy, 
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increases with facesheet thickness. Thus, the prominence of the force oscillations brought about by the 

vibrations of the specimen can be expected to increase with facesheet thickness. 

2. For any given facesheet thickness, as impact energy increases, eventually a point is reached where 

the load history is no longer smooth, instead, a major load drop occurs and is followed by multiple 

cycles of loading and partial unloading. It is of interest to identify the damage or damages that give rise 

to the major load drop. The damage that is responsible is a major energy absorbing process. Force 

history alone can not reveal the damage that produces this load drop, but the current work does 

eventually identify the damage associated with the major load drop. 

3. For any given facesheet thickness, the load at which the major load drop occurs is independent of 

impact energy. This is the fact often observed in the literature which motivates the idea that damage 

from low-velocity impact is controlled by the maximum load reached and not by the energy of the 

impact. From this, the assumption that quasi-static analyses and static indentation tests can be used to 

model and simulate impact tests was born. The range of validity of this assumption is of concern in this 

work and will be investigated by comparing load displacement curves and C-scans from statically and 

dynamically loaded specimens. 

4. Increasing the facesheet thickness increases the load at which the major load drop occurs. This idea 

is intuitive, a thick facesheet is more damage resistant than a thin one. 

5. Increasing the facesheet thickness increases the magnitude of the major load drop. This idea agrees 

with the absorbed energy data which found that the thicker facesheet specimens absorbed a greater 

proportion of the impact energy when they did receive damage. 

6. The initial loading rate (slope of the load history at the beginning of the event) and final unloading 

rate (slope of the load history at the end of the event) are of the same magnitude for those events not 

showing a major load drop, while the final unloading rate drops off for those events showing a major 

load drop. This can be observed in figures 15 through 19 as a slight "tail" at the end of the impact events 

16 



showing a major load drop, or more prominently in figures 21 through 25 as the difference between the 

loading and unloading slopes near zero load. The major load drop has been attributed to damage. The 

damage can be considered a loss of stiffness. The reduction in the final unloading rate (without 

noticeable reduction unloading rate immediately after the damage) may indicate that the damage present 

induces a nonlinearity in the stiffness. The effect of the nonlinearity is to locally soften the structure for 

small displacements (or loads) but for large displacements (or loads) the global stiffness of the structure 

dominates and the structure stiffens. 

7. The major load drop is followed by a response that appears to have a superposed secondary sine 

wave of nearly the same frequency as was seen before damage but with much greater amplitude. One 

could think of this as follows. The major load drop appears to the undamaged portion of the plate to be a 

negative step function in load. It is to be expected that such an abrupt change in load will excite a broad 

range of natural frequencies of the plate. The most prominent of these frequencies is the same as that 

seen before damage, indicating that the global stiffness of the specimen has not changed significantly. 

This point argues for a localized damage. 

3.4.3  Transverse strain. 

In considering the static indentation data, the average (through the thickness) transverse strain 

immediately under the indentor gives additional insight into the damage processes. Knowing the 

displacement of both surfaces ^ and Sscoam as well as the original sandwich thickness, average transverse 

strain is defined as 

average transverse strain = — 522=L (5) 
thickness 

This quantity is plotted against tup displacement for specimens of each facesheet thickness in figure 20. 
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The value of the transverse strain measure outlined above is that it highlights the points in the loading 

sequence when the top surface and the bottom surface moved toward each other abruptly. That is, the top 

surface moved down slowly with the crosshead and the bottom surface foUowed except for certain times 

when the bottom surface moved rapidly back up. These rapid movements of the bottom surface coincided 

with load drops. A drop in load for a given top surface displacement indicates strain energy release, or 

damage progression. The question is, what form or forms of damage are producing these load drops? 

Undamaged core between the facesheets resists transverse strain. By Hooks law, an abrupt increase in 

transverse strain indicates either an abrupt increase in transverse stress or and abrupt decrease in transverse 

stiffness. Since the load, and hence the transverse stress, is dropping (or at least not increasing) these jumps 

in transverse strain must indicate a drop in transverse stiffness. Of the two possible contributors to this 

stiffness drop, facesheet and core, core has by far the greater potential for causing such a large strain jump. 

If the top facesheet failed by delamination or matrix cracking without core failure, the transverse facesheet 

strain jumps implied by the observed average transverse strain jumps are unreasonably high (e.g. -8 percent 

for the 16 ply case). Therefore, the observed average transverse strain jumps are assumed to indicate abrupt 

core failure. If the core had no attached facesheets and were under compression from the indentor directly, 

only that portion in contact with the indentor would fail. The facesheet effectively spreads the transverse 

stress out over the core. The thicker the facesheet, the greater the core area over which the transverse stress 

is spread. Thus, sandwiches with thicker facesheets should be expected to take a higher load before the core 

fails. In addition, when they fail, a larger portion of the core should be expected to fail so that the strain 

energy released should be expected to be greater. 

3.4.4 Dynamic and static compared. 

A major question addressed by this research is the range of validity of the assumption that low- 

velocity impact to composite sandwich plates is a quasi-static process. By comparing static and dynamic 
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equilibrium and delamination patterns, a look at the importance of dynamics on the processes of damage 

initiation and progression in composite sandwich structures is available. Two metrics will be used to 

compare static and dynamic data, the load versus tup displacement curve (equilibrium) and C-scan 

(delamination pattern). 

3.4.4.1 Load-displacement curves. For a static or quasi-static loading, a load versus displacement curve 

is essentially a record of the equilibrium states before, during, and after damage. The difference between 

a truly static load versus displacement curve and that of a time-dependent process is the inertial loading 

present in the dynamic process and absent from the static. Comparison of load versus displacement 

curves then, will allow the analyst to judge the magnitude of the inertial forces relative to the static 

forces. In addition, since the strain energy release associated with damage manifests itself as a drop in 

load, the first failure loads, displacements, and load drops can also be compared. Similar damages will 

presumably have similar effects on the load versus displacement curve. 

Figures 21 through 25 show load versus displacement curves under static loading as well as several 

impact loadings with and without damage. By these figures the reader is intended to observe both the 

similarities and differences between static indentation and dynamic impact for the several facesheet 

thicknesses tested. The load histories for the impact events in figures 21 through 25 were previously given 

in figures 15 through 19. In all but the 4-ply case (figure 21), the static displacement was increased until the 

first major load drop, then it was decreased. For the 4-ply case, the first "major" load drop was a more 

subjective judgment Goad drops occurred at 270 N, 330 N and 530 N as well as the easily seen drop at 690 

N) so data for the full range of static displacement is shown in figure 21. 

The first major load drop was difficult to distinguish in the 4-ply impact data shown in figure 21. 

Damage is apparent in the 0.34 J event and in the 0.094 J event (see figure 15) but not in the 0.11 J and 0.22 

J events. It is thought that for this very thin facesheet the contact pressure is transferred almost directly to 
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the core. That is, the facesheets have very little bending stiffness and hence do a poor job of spreading out 

the contact stress. As a result, a very small area of the core sees all of the transverse load. This small portion 

of the core may be a single cell or just part of a cell. The loaded portion of the core begins to fail very early 

but since it is so small the strain energy released by the failure is also small. Thus the almost imperceptible 

load drop at 325 N in the static case may in fact be the first core failure. Another drop at 510 N in the static 

case is more readily discerned and may represent the failure of adjoining cell walls. The next few drops near 

700 N in the static case are easy to see and are more like those seen on the thicker facesheet specimens, 

perhaps indicating that the contact is fully established and core failure and facesheet delamination are 

happening together. If this explanation is correct, then turning to the dynamic data, the anomaly of damage 

in the 0.34 J event and in the 0.094 J event but not in the 0.11 J and 0.22 J events could be simply the result 

of minor differences of the impact point with respect to the honeycomb cells. Suppose the 0.094 J event had 

the impact point directly over a cell wall while the 0.11 J and 0.22 J events had the impact point near the 

center of a cell. In this case, the 0.094 J case might be expected to fail at a lower load because a fewer cell 

walls were available to react the load. For impact energies above 0.3 J, the 4-ply data are consistent in 

showing a first major load drop near 600 N. 

The 8-ply data in figure 22 show loading and unloading for the 0.19 J and 0.28 J events to be almost 

perfecdy following the same path. This fact is thought to indicate that no damage is taking place and that the 

energy absorbed by the dynamics of the system is small. Interestingly, the 0.28 J event reaches a load which 

is equal to the load for the first major load drop in the higher energy events and is more than IS percent 

greater than that which caused the first major load drop in the static indentation data. In figure 22 it can be 

seen that the static test shows the first major load drop near 830 N while the impact tests show it near 1100 

N. The tendency for the static loading to bring about the first major load drop at a lower applied load than 

the dynamic loading was consistent among all facesheets tested. The slopes of the curves here represent the 

local stiffness of the plate. In the dynamic tests, the applied force can be thought of as having two 
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components. The first is the product of the staue stiffness and the displacement, and the second is the 

product of the plate effective mass and acceleration (Newton's second law). For the purposes of the 

following discussion, the second term will be referred to as the "inertial stiffening force." In the 8-ply data 

the inertial stiffening effect is more pronounced than in the 4-ply data as can be seen by the "waviness" of 

the slope in the impact curves before the first load drop. This is believed to be an effect brought about by the 

increased inertia related to the larger mass of the thicker specimens. 

Similar to the 8-ply data, the 16-ply data in figure 23 show loading and unloading for the 0.47 J and 

0.88 J events to be nearly following the same path. Much more dramatic than the 8-ply data, however, is the 

magnitude of the first major load drop. Since the magnitude of the load drop reflects the strain energy 

released, these data indicate that much more energy is absorbed by the damage causing first failure in the 

16-ply specimens than in the 8- and 4-ply specimens. In these data it can be seen that the static test shows 

the first major load drop near 2300 N while the impact tests show it r^ 2800 N. Also, the rragnitude of the 

load drop is roughly 600 N for the static test while it ranges from 800 N to 1100 N for the impact tests. In 

the 16-ply data the inertial stiffening effect is even more pronounced than in the 8-ply data as can be seen by 

the greater initial slope of the load versus displacement curve for the impact events. This is believed to be an 

effect brought about by the increased mass of the specimen. 

Unlike the 8- and 16-ply data, the 32-ply data in figure 24 show loading and unloading for events not 

exhibiting a major load drop (3.49 J, 3.90 J and 4.40 J) do not follow the same path. There are evidently 

more energy losses before damage in these tests than in the thinner facesheet tests. This is confirmed by 

figures 12 and 13 in which the below-threshold 16-ply specimens absorbed less than 10% of the impact 

energy while the below-threshold 32-ply specimens absorbed more than 30% of impact energy. The 

dramatic load drop of the 16-ply data continues in the thicker 32-ply data. The static test shows the first 

major load drop near 5800 N while the impact tests show it near 8000 N. Also, the magnitude of the load 
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drop is roughly a factor of 2.0 lower for the static test than it was for the impact tests. The inertial stiffening 

effect continues to become yet more pronounced than in the thinner facesheets. 

All the trends observed in the 32-ply data continue in the 48-ply data (figure 25). The static test shows 

the first major load drop near 10500 N while the impact tests show it greater than 13000 N. The magnitude 

of the load drop is roughly a factor of 1.5 lower for the static test than it is for the impact tests. 

A general statement about the influence of facesheet thickness on the dynamics of the impact event 

can now be made. The load versus displacement curves of the static and dynamic tests compare better for 

thin facesheets than for thick ones. Thus, increasing the facesheet thickness makes the dynamics of impact 

more important. This is expected because the additional mass of the thicker facesheets increases the inertia 

of the specimens. 

3.4.4.2 C-scans. No information about the physical effect of the damage processes is available from a 

load versus displacement curve. In order to obtain such information, after impact or static indentation, all 

specimens were ultrasonically inspected for damage using the time-of-flight C-scan technique. The 

images thus produced show delamination patterns and can be used to qualitatively compare damages 

from different events. Figure 26 shows a direct comparison of C-scans for static and impact events. The 

events were chosen for that comparison based upon a similarity in the load histories. In particular, the 

impact events were performed first and the lowest energy event that showed a major load drop was 

chosen. For these events the load histories are identified as 0.34 J, 0.47 J, 1.35 J, 5.24 J, and 10.08 J 

respectively in figures 10 through 14. The static events were created specifically for this comparison 

based on a similar criteria, that is, the crosshead displacement was slowly increased until the first major 

drop in load was observed and then the crosshead displacement was slowly decreased. The comparison of 

static and dynamic impact damages shown in figure 26 then, is not based on equivalent peak loads. The 

conventional wisdom that, "equivalent peak loads produce equivalent damage," was not validated by this 

22 



research. The equivalence found in this research is based on load drops rather than peak loads, so the 

static and dynamic data associated with the first major load drop are compared in figure 26. 

The shades in the C-scans of figure 26 indicate the depths (distance from the top surface) of the 

delaminations present in the specimens after impact. The scales relating shade to delamination depth are 

different for each scan, so shades should not be compared between scans. The shades are shown to give the 

overall perspective that delaminations are occurring at different depths and that the delaminations become 

larger in the deeper interfaces. The shades also allow a better view of the in-plane shapes of the 

delaminations. The C-scans in figure 26 show some similarity between the damage associated with the first 

major load drop in a static test and the damage associated with the first major load drop in a dynamic test. 

This similarity can be seen in figure 26 by comparing the overall sizes and shapes of the delaminations. The 

similarity is present for all facesheet thicknesses tested. In particular, the overall size of the deepest and 

shallowest delaminations, the number of interfaces (different colors) found to have delaminations, and the 

general shape of the delamination pattern all compare well between static and dynamic data. 

If a comparison were made of C-scans of statically and dynamically loaded plates with similar peak 

loads, a very different story would be obtained. The essence of the difference is that the dynamically loaded 

plates reached a higher peak load before failure. Thus, dynamic events reaching the same peak loads as the 

static events of figure 26, show no delaminations in the C-scans. Alternatively, however, static events 

reaching the same peak loads as the dynamic events of figure 26, show delaminations similar to those of 

figure 26. Peak load, then, is not an appropriate equivalence between the static indentation and dynamic 

impact events for composite sandwich plates since two specimens loaded to the same peak load (one impact, 

the other static) may or may not show similar damages. This indicates that quasi-static analysis and testing 

in which peak load is compared with the peak load from a dynamic event, may indicate failure at a lower 

peak load than an actual impact event would find. 
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Comparison of the C-scans in figure 26 might lead one to conclude that there are both similarities and 

differences between the static and dynamic delamination fields. A word of caution is appropriate here. At 

best, the general shapes (hour glass and crossed hour glasses) and gross size of the delamination patterns of 

the 4- and 8-ply data are repeatable. There is also a good deal of randomness in the patterns observed. This 

randomness can be seen in figure 26 when one considers the fact that all loads, material properties, and 

boundary conditions possessed bilateral symmetry while the delamination patterns deviate from this 

symmetry somewhat. Less can be said for the thicker facesheet specimens. For the thicker facesheet 

specimens, the gross size may be repeatable and the general feature of delaminations becoming wider as the 

depth increases is characteristic of all of the data, but to try to compare shade by shade and shape by shape 

is asking too much of these data. The purpose of figure 26 is to show overall similarity of delamination 

patterns and sizes for static indentation and dynamic impact loaded composite sandwich plates. Meaningful 

comparisons stop there. 

3.4.4.3 Photomicrographs. Neither core failure nor matrix cracking are generally observable by C-scan. 

In order to observe these damage mechanisms a representative portion of the specimens were sectioned, 

and observed under an optical microscope. A typical photomicrograph is shown in figure 27. Crushing of 

three of the five honeycomb core cell walls is evident as are multiple delaminations and transverse matrix 

cracks. As observed elsewhere1, the termination of transverse matrix cracks at the interfaces between 

plies of differing orientations appears to be associated with delaminations at those interfaces. 

4. CONCLUSIONS 

Minimizing the tup mass ratio is shown to significantly improve the temporal fidelity of the load data 

produced by an instrumented impactor test system Corrected absorbed energy seems to indicate damage. 

Figures 10 through 14 demonstrate a jump in absorbed energy at the impact energy that initiates damage. It 

is possible to confirm that there is failure within a composite sandwich plate subjected to low-velocity 
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impact by an instrumented impactor without relying on post-impact inspection of the specimen. Thick and 

damaged sandwiches are not quasi-static. The assumption that low-velocity impact damage within a 

composite sandwich plate is independent of the loading rate does not appear to be valid in these cases. The 

static and dynamic events differ significantly in the load at which the first major load drop occurs and the 

energy that is absorbed in the damage process associated with the first major load drop. Important damage 

information may be obtained from force history. For the range of parameters in this study, the first major 

load drop observed in the load history is associated with core failure. 
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Abstract 

Experimental results related to the initiation of 
damage in Z - fiber truss reinforced sandwich pan- 
els are presented. Two different orientations of pin 
angles are considered. A pendulum type impactor 
is used to impart very low levels of impact energy. 
Threshold energy levels at which the observable dam- 
age initiation occurs are determined. Nondestructive 
evaluation studies conducted prior to the impact are 
compared with the post impact status of the panels 
for assessing the type and magnitude of the damage. 
Effects specific to the impact phenomena are studied 
by comparing the load displacement characteristics. 

Introduction 

Composite materials made of sandwich construc- 
tion are being increasingly used in various aerospace 
applications. Some of the advantages of using sand- 
wich materials when compared to the conventional 
materials include high specific modulus, high specific 
strength and the ability to tailor to the requirements. 
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Typically, a composite sandwich material consist of 
stiff face sheets, primarily for resisting flexural bend- 
ing and a core for transferring the shear and transverse 
compression loads. In general, the material used for 
the core is light of weight and weak in flexural stiffness, 
but provides significant shear stiffness. Conventional 
materials used for the core include honeycomb and 
foam and each has been investigated extensively. 

A newly developed concept of a truss reinforced core 
1-2 has entered the market place in the recent years. 
This concept involves the replacement of a conven- 
tional foam core with either a truss reinforced core 
or truss reinforced hollow core. Details of the con- 
struction of the core can be found in Ref. 1. The 
general idea is based on inserting high strength and 
stiffness pins into a sandwich panel, either to replace 
the existing core or to supplement the core. These 
pins act as trusses transmitting forces through out 
the sandwich and provide the required structural in- 
tegrity. If the space between the pins is filled with 
foam or honeycomb, the filler material will provide 
a higher pin stability. On the other hand, leaving 
the core space between the pins empty can provide 
space for fuel storage, among other things. Both types 
of sandwich constructions offers better delamination 
growth control when compared with other sandwich 
type constructions1. 

These materials are prone to many types of dam- 
ages, such as pin compression failure, pin buckling, 
pin pull out from the face sheet etc(pin related fail- 
ure modes), delaminations, debonding etc (face sheet 
related failure modes). All or some of these damage 
modes can be severe under low velocity conditions, 
which is a most common occurrence in the life span 

1 



of the material. Experimental study of the various 
damage modes due to low velocity impact events, and 
the energy required for the initiation of these damage 
modes is the main focus of this paper. 

In this experimental study, sandwich plates are 
composed of graphite epoxy face sheets and steel fiber 
pins for the core. Two orientations of pin angle (10 
and 20 degrees) are considered in which the volume 
of the pins per unit plate area is kept constant. Face 
plates consist of 16 layers of symmetric orientation. 
The sandwich plates are impacted by pendulum type 
impactors with a hemispherical nose (tup). Contact 
force is monitored through out the impact event using 
an instrumented impactor. Before the impact event, a 
sampling of the specimens were evaluated using ultra- 
sonic c-scan in order to check for various defects. After 
impact loading, the specimens are inspected nonde- 
structively for the presence of various damage modes 
and their extent. Impact energy associated with dam- 
age modes is discussed. 

Specimen and Method Figure 1: Top view for the z-pin sandwich construction 

Specimens used in this experimental investiga- 
tion consisted of two face sheets each of orientation 
[0/45/90/-45]2s made up of graphite epoxy material. 
The pins used as core are made of steel and are of 0.508 
mm in diameter. Foster Miller Inc provided three 
plates of 10 degree pin orientation and three plates of 
20 degree pin orientation, each of size 254 mm X 254 
mm. Orientation of the pin angle is measured from 
the vertical axis (as shown in Figs 1-3).Each plate is 
cut into 4 specimens of 10.16 mm X 10.16 mm dimen- 
sion. The remaining plate material is used to gain 
initial insight into the types of damage modes and the 
energy levels associated. All these specimens are re- 
strained in a 20.32 mm X 20.32 mm fixture providing 
near simple support on all edges of the 7.62 mm X 
7.62 mm effective specimen size. 

An instrumented pendulum testing system is used 
for all the experimentation. Past experience3-6 with 
various impact testing systems resulted in the selec- 
tion of this testing system as it is possible to impart 
very low impact energies. Impact energies of less than 
0.5 Joule are expected to initiate the damage in the 
considered specimens. A picture of the pendulum set 
up used is shown in Figure 4 and a a schematic of 

Figure 2: Side view for the z-pin sandwich construc- 
tion 

Figure 3: Schematic of Side view for the z-pin sand- 
wich construction 



Specimen 

Figure 4: A Pendulum test set up Figure 5: Schematic for the pendulum test set up 

the system is shown in Fig 5. The pendulum consist 
of 15 KN load cell with a 1.27 cm radius nose. Im- 
pact energy is regulated by means of the swing of the 
pendulum and resolved by measuring the mass of the 
pendulum and its velocity just prior to impact. A dig- 
ital oscilloscope is used to record the force data from 
the experiment at 5 psec intervals. Mass of the pendu- 
lum used in the experiments is 3.48 kg. No specimens 
are impacted more than once. All the specimens are 
visually and ultrasonically inspected after impact to 
determine the existence of the damage in the form of 
crushing failure at the surface under the tup, interply 
delamination in the top face sheet, buckling or com- 
pression failure of the pins, pull out or push up of 
the pins from the facesheet. Several specimens were 
sectioned and photomicrographed after C-scanning to 
reveal the through the thickness distribution of delam- 
inations and matrix cracking. 

Results and Discussions 

Results obtained from these experimental studies 
are discussed in two parts. In the first part, results 
obtained from the low velocity impact experiment, in 
the form of load deflection curves etc are discussed. 
The energy levels, at which the damage initiates, are 
determined. In the second part of this section, spec- 
imens are analyzed using nondestructive evaluation 
techniques. 

The Force - Time histories of load levels are shown 
in Figure 6 for 10 degree pin orientation and in Fig 7 

for 20 degree orientation. Newton's second law related 
to impulse and momentum for the tup is integrated 
to calculate velocity as a function of time. The tup 
velocity, V(t) is determined from the contact force as 

V(t) = V(0) - - f F(r)dr ( 
"» Jo 

1) 

Here V'(0) is the initial impact velocity of the tup 
which is a measured quantity and m is the mass of 
the tup. Based on the velocity calculation, displace- 
ment is determined by again numerically integrating 
with respect to time. The displacement as a function 
of time 6(t) can be written as 

6{t) = / V(r)dT + 6(0) 
Jo 

(2) 

Here 6(0) is the initial displacement which is taken 
equal to zero. Load - displacement curves for the in- 
dividual orientations are shown in Figure 8 and Figure 
9. In Figs. 6 and 7, it can be observed that some of 
the load time curves associated with lower energy lev- 
els are smooth curves while some of the load curves 
associated with higher load levels have high frequency 
variations in the load time histories. Load displace- 
ment curves corresponding to these load time histo- 
ries also indicate a similar phenomena. An interesting 
phenomena which can be observed is that the load 
creating the onset of high frequency variations occurs 
at a relatively constant value for all the specimens 
tested (it is 1400 N for 10 degree orientation pin and 
1000 N for 20 degree orientation pin). If the applied 
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load is less than this threshold level, there is no in- 
dication of significant damage. This corresponds to 
an energy level of 1.26 Joules for 10 degree orienta- 
tion and 0.7168 J in 20 degree orientation. If the ap- 
plied load is much higher than this load level, there 
is the onset of high frequency variation followed by 
a relatively smooth load time history. This phenom- 
ena indicates the load and the impact energy level at 
which the first major failure occurs. C -Scan results 
indicated the first major failure phenomena to be face 
sheet related, primarily characterized by pin push - 
through. Visual inspection indicated the possibility of 
some pin buckling and face sheet delaminations at a 
lower load level which was not visible in the load time 
curve but appeared as a residual displacement in the 
load displacement curves. 

Absorbed energy as a percentage of impact energy 
is shown in Figure 10 and 11 ( for 10 and 20 degree an- 
gle orientations). First major increase in the absorbed 
energy level can be estimated to be the threshold en- 
ergy level at which the damage occurs. It is obvious 
that this energy is a function of pin orientation, being 
lower at the higher angle. It should be noted that lo- 
cal pin failures did not reflect in the increased energy 
absorption levels. 
Post-Failure Analysis of Truss Core Panels 

The damage developed in the top and bottom 
facesheets was not visible on visual inspection. Post 
- failure analysis of few of the samples was conducted 
using optical microscopy. The samples were potted in 

Figure 7: Load Time curves for 20 degree orientation 

Figure 8: Load Displacement curves for 10 degree ori- 
entation 
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Figure 9: Load Displacement curves for 20 degree ori- 
entation 
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Figure 10: Nondimensionalized Energy- plot for 10 de- 
gree orientation 

Figure 11: Nondimensionalized Energy plot for 20 de- 
gree orientation 

a room temperature cure epoxy resin and sectioned 
carefully along the impact location. The cut sec- 
tions were polished and observed on an optical mi- 
croscope to reveal the through-the-thickness distri- 
bution of damage. Representative failure modes at 
the threshold load in the top and bottom facesheets, 
shown in Fig. 12 -14, were found to be a combination 
of pin-push out (pin piercing) from the facesheet, de- 
formation of the facesheet in the direction of pin push 
out, delamination progression arising from pin loca- 
tions and the coalescence of delaminations between 
adjacent pins along the interfaces. The core damage 
was restricted to local pins in the vicinity of the im- 
pact location. Although the energy levels for damage 
initiation for the 10 and 20 degree orientation speci- 
mens was different, their failure modes did not change 
significantly. 

Conclusions 

The force - time histories can be used as a measure 
to determine the energy levels where the significant 
damage occurs in sandwich panels. 10 degree orienta- 
tion pins seem to be more resistant to impact induced 
damage when compared to 20 degree orientation pin 
angles in the core region. In both the orientations, face 
sheet damage seems to be the first significant failure 
mode. 



Figure 12: Pin push through 
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Figure 14: Shear cracks 
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ABSTRACT 
Composite sandwich constructions offer light weight and high 

bending stiffness advantages for aerospace and automotive 
applications among other structures. The use of a hollow truss core 
or z-fiber pin core is a new concept in sandwich composites, where 
the core is hollow and accessible, thereby providing space 
advantages for fuel cells and/or electronic assemblies besides from 
possessing high shear and axial stiffness. The z-fiber pins are 
oriented at predetermined geometry's and penetrate into the 
laminated facesheets making-up the sandwich composite. In the 
reference (Palazatto et. al, 1997), the low velocity response of 
hollow truss core composites with z-fiber pins oriented at 10 degree 
and 20 degree angles with respect to the facesheets were 
investigated by us. The current paper presents the post-impact 
microstrucrure, ultrasonic and vibration based nondestructive 
evaluation (NDE) studies and compression-after-impact response 
accompanied by acoustic emission (AE) testing of these composites. 

BACKGROUND 
A number of composite manne vessels, transportation body frames, 

structural parts in aircraft and helicopter blade components utilize 
advanced sandwich composite constructions because of their design 
flexibility and lightweight characteristics. Typically, a sandwich 
composite is comprised of a low density core sandwiched between a 
top and bottom face sheet made of fiber reinforcement that provides 
high bending strength/stiffness. There is considerable interest in 
developing innovative sandwich composites that offer space 
advantages in addition to high bending and axial stiffness for 
aerospace applications (Freitas et al., 1994, Hemp and Palazatto, 
1996. Herup, 1996). Truss core or Z-fiber pin core (Freitas et al., 
1994, Palazatto et al., 1997) composites provide an alternative 
sandwich construction, where the core is hollow and comprises a 
system of z-fiber pins that penetrate into the facesheets according to 

predetermined geometry and configuration as shown in Fig. 1. This 
innovative concept makes the composite suitable for a variety of 
processing alternatives including, autoclave bag molding and 
vacuum assisted resin transfer molding. The z-fiber pins making up 
the core are of extremely fine diameter (0.508 mm - 0.889 mm). In 
the current study the z-fiber pins were oriented at 10 degree and 20 
degree orientation with respect to graphite/ epoxy facesheets. The 
general arrangement of the z-fiber pins is described in (Palazatto et 
al., 1997). The facesheets are made of 16 layers of graphite/epoxy 
arranged in a quasi-isotropic stacking sequence. 

The experimental details of the swing pendulum type low velocity 
lest are similar to those used in (Herup and Palazatto, 1996. Herup, 
1996). In the previous part of this work (Palazatto, 1997), the low 
velocity impact characteristics of the sandwich composites with 10 
degree and 20 degree oriented z-fiber pins were investigated. The 
energy thresholds for impact were presented and it was found that 
the energy required to cause damage initiation in the 10 degree 
oriented samples was 1.26 J, while for the 20 degree z-fiber pin 
orientation, it was 0.72 J. Furthermore, the load at which the 
initiation of damage occurred was independent of the impact energy 
For the 10 degree z-fiber pin oriented samples, the load was 1400 
N, while for the 20 degree z-fiber pin oriented samples, it was 1200 
N. The current paper presents the results on the low velocity impact 
related failure modes, the post-impact nondestructive evaluation 
(NDE) studies and compression-after-impact (CAT) testing 
conducted on the truss core specimens. The NDE studies included 
ultrasonic and vibration testing of the specimens and acoustic 
emission testing (AE) accompanying the CAI tests. 



ULTRASONIC C-SCAN TESTING 
The specimens were subjected to ultrasonic C-scan using a Testech 

immersion type pulse-echo system with a Krautkramer USP-12 
ultrasonic pulser-receiver and a 5 MHz transducer. The specimens 
were tested tor back and front facesheets separately, first prior to 
testing and subsequently after the impact tests. The C-scans 
obtained were satisfactory in terms of resolving individual z-fiber 
pins and mapping the z-fiber pin clusters accurately Figures 2a and 
2b show typical C-scans for "before testing"' of a specimen with 10 
degree and 20 degree z-fiber pin orientations. Figures 3a and 3b 
show typical C-scans of a specimen subjected to low velocity impact 
loading. The damage caused by the indentor is clearly observed 
from Fig. 3a on the top facesheet. In addition, at several locations 
on the top as well as bottom (Fig. 3b) facesheets, a coalescence of 
dark lines and enlargement of dark spots indicate locations where 
pin push-through accompanied by coalescence of delamination 
between adjacent pins occurs. These observations are in agreement 
with microstructural studies performed by sectioning the samples at 
regions of C-scan indications. These damage conditions are seen to 
spread out over a large portion of the top and bottom facesheets, and 
are not localized around the loading region. 

tested for the CAJ tests. Table 1. summarizes the results from the 
CAl tests. At several locations along the load-displacements local 
variations in the load corresponded to audible clicking of the pins. 
as they tended to debond from the facesheet. Towards failure, this 
phenomenon occurred with more frequency, and a facesheet 
delamination which was audible, was evident at failure. The failure 
loads were representative of the impact event that they underwent, 
the 10 degree z-fiber pin oriented specimen subjected to repeated 
impact loading failed at 3291 kgs, the 10 degree z-fiber pin oriented 
specimen subjected to single impact at failure load, failed at 3949 
kgs, the specimen with 10 degree z-fiber pin orientation below 
failure initiation load exhibited a highest value of 3745 kgs and the 
20 degree z-fiber pin orientation under failure load exhibited 3222 
kgs, the lowest of all. Ultrasonic C-scans of the failed specimens 
are shown in Figs. 10 and 11. The coalescence of delaminaüons 
across a system of pins is evident for all the specimens tested. The 
damage area around the impact location is not influenced bv the 
compression loading as seen in Figs. 10. The failure is initiated 
primarily by the localized failure of a system of pins. The 20 degree 
z-fiber pin orientation specimens show a greater damage state than 
the 10 degree z-fiber pin orientation specimen as seen in Fie. 11 

FAILURE ANALYSIS OF Z-FIBER PIN COMPOSITES 
The schematic of failure as observed across the top and bottom 

facesheet is illustrated in Fig. 4 and details around a single z-fiber 
pin is shown in Fig. 5. Typically failure initiation at low impact 
energies occurred by matrix cracking and microdelaminations in the 
vicinity of the locations where the z-fiber pins entered the facesheet. 
Also, initiation of debond at pin • facesheet is seen at low impact 
energies Both these phenomena are illustrated in Fig. 6. Prior to 
the pin push-out that occurs at threshold energy, the facesheet plies 
around the pin exhibit a tendency to displace along with the pin for 
the top and bottom facesheets. With further displacement, the plies 
undergo shear cracking and delamination, first at individual pin 
locations and subsequently coalescence of delaminations that extend 
between a system of pins. A typical pin-facesheet debond, and 
delamination extending outwards from the pins are shown in Fig. 7. 
The failure is distributed over a system of pins and not limited to a 
single pin cluster. The pin push-through that occurs at threshold 
energy is shown in Fig. 8. In addition, to the above phenomena, the 
global bending of the facesheets was observed at higher impact 
energies and quasi-static loads. 

COMPRESSION AFTER IMPACT (CAl) TESTING 
Four of the samples representative of various impact conditions 

and pin orientations were subjected to compression-after-impact 
testing using a SACMA recommended plate compression fixture. A 
150 kHz acoustic emission (AE) sensor was attached to the 
specimen's geometric center using a viscous couplant and an 
electrical tape. A two channel LOCAN-AT Physical Acoustics 
system was used for AE monitoring. The specimens were loaded at 
a constant crosshead speed of 0.254 mm / min until significant load 
drop was observed in the load-displacement curve. Figure 9 
represents load-displacement curves for three of the four specimens 

ACOUSTIC EMISSION TESTING 
Energy, amplitude and event durations of AE events were 

monitored during the CAl tests. AE activity was seen to be 
continuous throughout the loading history of the specimens. Figure 
12 represents the parametric distributions of amplitude and duration 
with respect to test time, while Fig. 13 represents the same 
information using amplitude and energy with respect to test time 
The distribution of AE events shown in Fig. 12 broadly lies in three 
groups; first a low duration <S00 ms, low amplitude 40-55 dB, 
second, a medium duration 500-2000 ms, medium amplitude 55-70 
dB and third, a high duration >2000 ms, high amplitude events. The 
energy based grouping of these events as shown in Fig. 13 show a 
small energy <100 for a majority of type one and type two events 
described above. Only a few events, are seen to exhibit high 
amplitude, high energy >750, corresponding to dominant occurrence 
of pin pull-out and facesheet delamination. The first set of events 
occur from the early stage of loading and last till failure and are 
primarily attributed to matrix microcracking and events 
corresponding to initiation of localized debond pin-facesheet. Tbe 
second set of events are primarily due to pins separating and/or 
sliding against the facesheet plies creating microdelaminations and 
further debonds. These events also corresponded to audible clicking 
of the pins, indicating that some pins undergo a pin pull-out 
phenomenon. 

VIBRATION TESTING 
The specimens were tested to investigate the global stillness 

changes using a vibration based nondestructive evaluation (NDE) 
testing following impact and/or static loading. The specimen was 
mounted in a near free-free boundary condition using bees wax at its 
geometric center on an impedance head connected to a 
electrodynamic shaker Bruel & Kjaer 4810 excited using random 
noise excitation.   The input force and output acceleration signals 



from the impedance head were fed to a dual channel frequency 
analyzer B&K 2032. The frequency response function (FRF) of the 
specimen under predominantly bending vibrations were recorded. 
Figure 14 compares the FRF of 10 degree z-fiber pin orientation 
specimens subjected to a single impact vs that subjected to a 
repeated impact. The first three modes are seen to be unaffected by 
the impact event related condition of the specimens, however, at the 
higher modes between 5500 Hz -12,500 Hz within the measurement 
range, it is seen that the specimen subjected to repeated impact 
loading exhibits 15-20 % reduction in frequency as compared to the 
specimen subjected to a single impact at failure load. For example, 
the 6450 Hz frequency is seen to reduce to 6320 Hz for the specimen 
subjected to repeated loading. Figure 15 compares the FRF's for an 
impact loaded specimen at failure load and statically loaded 
specimen under failure load, with 10 degree z-fiber pin orientation. 
In this case, the first two modes and higher modes for the statically 
loaded specimens showed lower frequency values as compared with 
the impact loaded specimens. This indicates that the stiffness loss 
for the statically loaded specimen is greater, and hence, the 
delanunations and pin push-through is more extensive as compared 
with the impact loaded specimens. Furthermore, based on the 
vibration tests, it is noticed that not all the modes are sensitive to 
the presence of damage, or variations in localized stiffness 
conditions, however, only some of the modes within the FRF are 
seen to be sensitive to the specimen condition. This suggests that 
depending upon the location and proximity of the damage state 
(which is not uniform for unit area of the facesheet) for a system of 
pins, the vibration response of that mode is accounted. No 
correlation has been attempted in this article to investigate the 
influence of damage position with respect to a mode number. Figure 
16 compares the FRF for the 10 degree z-fiber pin oriented 
composite to the 20 degree z-fiber pin oriented composite. The 20 
degree z-fiber pin oriented specimen exhibits slightly lower stiffness 
as compared to the 10 degree z-fiber pin oriented composite. 
The damping ratio of the specimens has been measured by 

performing zoom transform on the peak of the FRF using the half- 
power points method. The range of damping exhibited for the 
specimens for the modes measured was in the range of 0.0015- 
0 009. The highest damping ratio was exhibited by the specimen 
subjected to repeated impact loading (0.009) which was attributed to 
the large trictional energy dissipated at the larger damage zone. 

predicated by local pin debond characterized by the CAI curves. 
Acoustic emission curves indicate the dominant failure modes of 
matrix cracking, pin debonding and delamination. The natural 
frequency and damping ratio are sensitive to the static vs dvnanuc 
impact loading, however are unaffected by the local damage states 
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Facesheet 

Figure 1. Typical Truss Core Sandwich Composite 

CONCLUSIONS 
Failure characteristic appears to be pin push-through at threshold 

energy level for the z-fiber pin reinforced sandwich composite 
plates. The area surrounding the pins shows features of 
delamination and debonding between pins. The 10 degree oriented 
z-fiber pins caused threshold energy at a higher level than the 20 
degree onented z-fiber pins. Damage is significant at 1.26J for 10 
degree z-fiber pin orientation, and 0 72J for the 20 degree z-fiber pin 
orientation. The C-scans verify the phenomenon of delamination 
after pin push-through. The compressive failure of the 10 degree 
and 20 degree z-fiber pin oriented sandwich composites is governed 
by the threshold impact event. It was observed that compressive 
failure was characterized by pin debond and formation of 
delanunations.    Compressive failure becomes a localized event 

10 degree 20 degree 

Figure 2. Ultrasonic C-scans of Truss Core Composites 
•before" impact testing a. 10 degree z-fiber pin orientation b. 
20 degree z-fiber pin orientation 
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F,gUre 3. Ultrasonic C-scans of Truss Core Composites "after- 
low velocty impact testing for a 10 degree z-fiber pin 
orientation a. Impact Side Facesheet and b Backside 
Facesheet 
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Figure 4. Schematic of Failure Initiation and Progression 

Figure 6. Damage Initiafion at very low impact energies <1 J 

Figure 5 Details of Failure around in the vicinity of single pin- 
facesheet 
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Figure 7. Debond Development at Pin-Facesheet Interface 
and Propagation of Delamination to Adjacent Pin 

Figure 8. Pin Push-Through 
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Single Impact Repeated Impact 

Figure 10. Ultrasonic C-scan for a 10 degree z-fiber pin 
oriented specimen subjected to a) single impact event (energy 
1.26 J) b) four repeated impact events. Note: The scans are 

taken after CAI testing 

Displacement (in.) 

Figure 9. CAI load - displacement curves for 10 and 20 degree 
z-fiber pin oriented samples 

Table 1 : Summary of Compression-After-Impact Tests 

Specimen Orientation Failure Load (kgs) 

DT 10 degree 3949 

D/R 10 degree 3291 

S/U 10 degree 3745 

S/U 20 degree 3222 

Note: Samples wen • subjected to following static and/or 
low velocity impact conditions 

Loading Side Facesheet Back Facesheet 

Figure 11. Ultrasonic C-scan after CAI test for a 20 degree z- 
fiber pin oriented specimen subjected to 1.17 J impact energy 

D/* : Low Velocity Impact; Failure Initiation Energy 
D/R : Low Velocity, Four Repeated Impact Events 
S/U : Static Loading, Under Failure Load 

Figure 12  AE parametric distribution for a CAI loading of a 
10 degree z-fiber pin oriented specimen (AE Parameters : 
Amplitude and Duration of AE Hits) 

Figure 13 AE parametric distribution for the same specimen 
of Fig. 12 represented in terms of Amplitude and Energy of AE 
Hits 
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Figure 14 FRF comparing vibrational response of a specimen 
subjected to single impact vs repeated impact 

•Low Velocity Impact 
Loading 

• Quasi-Static Loading 

Frequency (Hz) 

Figure 15   FRF comparing vibrational response of a 
specimen subjected to quasi-static loading vs low velocity 
impact loading 
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Figure 16. FRF comparing vibrational response of a 10 degree 
vs 20 degree oriented z-fiber pin composite 



CHAPTER III: FINITE ELEMENT MODELING 

In this chapter, our efforts in the modeling of the sandwich panels is discussed. It included both 

analytical modeling using closed form solutions and numerical modeling using various 

commercially available finite element software such as NASTRAN, ASTROS etc. Efforts were 

also made to develop "in-house" finite element software to model the sandwich panels. All the 

modeling efforts carried out in the report can be described as " Phenomenological". That is, what 

ever results observed in the laboratory while carrying out the experiment, were simulated using 

the numerical modeling techniques. Parts of the work carried out were published in refereed 

journals. Instead of repeating the research work presented in specific journal articles, only the 

salient results are discussed, and the copies of the papers are provided as attachment. 

The work carried out in this chapter can be divided into six sub sections. In the first sub 

section, elasticity solutions for honeycomb sandwich panels under Hertizian loading (which 

closely resembles the low velocity impact) is discussed. This work was carried out by Major 

Herup and Dr. A.N. Palazotto and was published by the Journal of Aerospace Engineering. It is 

provided as attachment IV. In this paper, Pagano's original solutions for the bending of 

composite plates was extended for sandwich panels under Hertizian loading. The main purpose 

of this research was to gain insight into the interpretation of the experimental data and to judge 

the performance of the 'in-house' developed finite element software. In this work, two different 

solutions are obtained, one corresponding to the cylindrical bending of rectangular plate while 

the other pertains to the three dimensional bending of a rectangular plate. Contact stresses 

representing the impact loading are obtained in the form of truncated Fourier series. The 

elasticity solution pertaining to the cylindrical bending of the plate has shown the similar trend 

as was observed in the experimentation regarding the face sheet thickness. That is, the elasticity 

solution is indicating that when the face sheet thickness is small, static modeling can be used to 

describe the phenomena of low velocity impact while for thicker face sheets, both phenomena 

seem to differ significantly. 

The next section is about the development of an 'in-house' finite element code used to 

model the phenomena of low velocity impact of honey comb sandwich panels. The work that is 

carried out in this section is under preparation for a possible journal publication( Attachment V). 

DC 



A detailed description of this work can be seen in the Ph.D. Dissertation of Major Hemp 

(Submitted to Air Force Institute of Technology, 1996). A detailed description about the finite 

element theory for the sandwich panels, development of a contact algorithm, and comparison 

with the experimental results are presented. A global finite element model was proposed for 

load deflection characteristics which interacts with a local finite element model. The local finite 

element model was used to determine the load distribution due to the contact. For a global 

model, a 56 degree of freedom model was developed. For the local model, an iterative scheme 

was developed. Load deflection curves matched very well with those of experiment. Also, 

damage patterns created by the impact loading matched with those of experiments. However, as 

the analytical model described in attachment IV suggests, as the thickness of the face plate of the 

sandwich plate increased, the phenomena of the low velocity impact tends to be a dynamic 

instead of quasi static (as treated in the finite element model and the analytical model). Towards 

this end, it was proposed to carry out simple analytical investigations to model the dynamic 

aspects of the low velocity impact. Work carried out in this aspect is described as an attachment 

(attachment VI). 

The dynamics of a sandwich plate under low velocity impact is analytically modeled using 

simple spring -beams models by Dr. William Baker and Dr. Anthony Palazotto. Work carried 

out in this aspect is inconclusive. Preliminary results seem to indicate certain experimental 

results observed in the laboratory are due to the dynamics of the sandwich plate. One of the most 

important observation concluded that the commonly used Hertizian contact power law that is 

originally developed for isotropic materials may not be applicable to composite materials (in the 

literature it seems to be the practice). 

As a next attachment (attachment VII) modeling efforts towards the analysis of z-pins under low 

velocity impact loading was provided. Four different software packages were used , I-DEAS, 

NASTRAN, ASTROS and ABAQUS. The work on I-DEAS was carried out by Mr. V. Perel 

while similar work was carried out by Dr. Gummadi using ASTROS, NASTRAN and ABAQUS. 

In all the cases, similar results are obtained. In the report, results obtained graphically using the 

I-DEAS software only are provided. Three different models are discussed. These are: a two 

dimensional local model (model 1), a three dimensional global model with rod and plate 

elements (model 2), and finally, a three dimensional global model with brick elements (model 



3). In all the cases, a number of mesh sizes were used and the final mesh size was arrived at 

after convergence. The objective of the first local model was to understand the load bearing 

characteristics of the pins. From this model, it was observed that there was very little bending 

occurring within the pins and the major loading resistance within the pins was axial loading. 

However, when it comes to local failure of the pins through buckling, the moments (even though 

they are small) were taken into consideration. But there was very little difference in terms of 

load deflection characteristics when the pin was modeled using a bar (that can also have bending 

loads) or pin. Thus, for subsequent optimization studies, it was decided that a global plate -rod 

model could be used. In both these models (model 1 and 2), the composite face plate was 

modeled as an orthotropic plate with equivalent properties. Also, it was observed that the two 

dimensional finite element models that are used for honeycomb sandwich plates can not be used 

for modeling z-pin sandwiches since there is a significant through the thickness strain. Next, a 

three dimensional brick element model was developed for the sandwich plate. Refinement of the 

mesh was restricted by the memory of the computer. The primary objective of this study was to 

observe the trends of stress within the face plate across the thickness. To validate the mesh 

refinement, an analytical study was carried out for an isotropic material and the results matched 

exactly with that of the finite element model. Then the finite element model was modified to 

account for the lay up configuration of the face plate. Stress contour patterns across the thickness 

of the face plate were determined. This information was then used for the determination of the 

pin push out failure across the face plate. 

The converged finite element model was used to determine the load deflection 

characteristics of the sandwich plate under static loading considering the phenomena of failure. 

Two different failure modes were considered. The first failure mode considered is the buckling 

of the pins. Moments at the ends of the pins are taken into consideration while determining the 

buckling load of the pins. As a second failure mode, pin push through was considered. However, 

pin push through is a phenomena associated with the stress pattern in the face plate. 

Consequently, a correlation between the pin load and the face sheet maximum stress (based on 

the 3D brick finite element model discussed in attachment VIII) was characterized and used as 

the criteria for determining this failure. A quasi-nonlinear finite element model was developed. 

A number of NASTRAN runs were used to arrive at the result. The results matched very closely 

with those of experiments. 

XI 



As the last section of this report, studies carried out in optimizing the pin orientation are 

presented (Attachment IX). The Wright Lab developed ASTROS (a weight optimization 

software) was used to determine the best orientation of the pin that can have maximum buckling 

strength, maximum pull out strength and maximum compressive strength but least weight. A 

number of ASTROS runs are carried out with different pin orientation angles and at each 

orientation, an optimized sandwich plate, with the above mentioned constraints (buckling 

strength, pull out strength and compressive strength) was obtained. The angle at which the plate 

satisfies all the constraints but with the lowest weight was considered the best optimized pin 

orientation. From the analysis, it was concluded that between 20° and 35° angles, the pin 

orientation is almost the same in terms of the above constraints and can be used as the optimum 

pin angle. 

XII 



ATTACHMENT IV 

ELASTICITY SOLUTIONS FOR HERTZIAN LOADED COMPOSITE 
SANDWICH PLATES 
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ELASTICITY SOLUTIONS FOR HERTZIAN LOADED COMPOSITE 
SANDWICH PLATES 

By Eric J. Herup1 and Anthony N. Palazotto,2 Fellow, ASCE 

ABSTRACT: The elasticity solutions for composite laminates in bending originally developed by Pagano are 
extended for Hertzian contact-type loading in this paper. Two solutions are obtained, corresponding to cylindrical 
bending and three-dimensional bending of a rectangular plate. Loads simulating contact with a spherical indentor 
are obtained by superposition of the elasticity solutions for individual terms of truncated Fourier sine series 
representations of Hertzian contact stresses. In this way, a benchmark for models of impact loaded plates is 
provided in which the loading is more representative of contact than the solutions often used for that purpose. 
The solutions provide insight into the interpretation of experimental data from low-velocity impact tests and are 
used to judge the performance of finite-element-based low-velocity impact algorithms in predicting stress under 
the impactor. 

INTRODUCTION 

The need for strong, stiff, lightweight structures in bending- 
loaded applications for aerospace vehicle components has mo- 
tivated the design and analysis of sandwich structures using 
composite materials. These hybrid constructions consist of two 
relatively dense and stiff outer facesheets that are bonded to 
either side of a low-density core. The facesheets carry bend- 
ing-induced axial loads and the core sustains shear stresses as 
well as compressive stresses normal to the panel and resists 
wrinkling or buckling of the facesheets under axial compres- 
sive loading (Hackman 1965). The core usually has little in- 
plane and flexural stiffness, compared to the facesheets, but it 
can have significant transverse stiffness and adequate shear 
stiffness. The presence of the core places the facesheets away 
from the plate bending neutral axis, enhancing the bending 
resistance provided by the facesheets. The result is a thicker 
plate or shell with a much higher bending stiffness-to-weight 
ratio than the facesheets alone. 

A principal drawback of laminated composite panels in gen- 
eral and composite sandwiches in particular is their suscepti- 
bility to low-velocity impact damage such as that brought 
about by dropped tools and runway/taxiway debris. In partic- 
ular, significant loss of compressive strength has been found 
to occur without any visible sign of damage (Rhodes 1975, 
1978; Schoeppner 1994). This is a major concern for both 
manufacturers and end users who need to locate damages and 
define criteria for acceptance and/or repair of structural mem- 
bers. There remains much room for improvement of composite 
sandwich damage resistance. Increasing the damage resistance 
of a structure requires understanding of its response to me- 
chanical loads. In particular, the response of composite sand- 
wich structures to low-velocity impact loading is of significant 
interest. Perhaps the most popular among the approaches for 
predicting the response of composite sandwich structures to 
low-velocity impact loading is finite-element analysis. Often- 
used benchmarks for finite-element codes used for such anal- 
yses are the elasticity solutions of Pagano (1969), which 
provide exact solutions for composite laminates in cylindrical 
bending and rectangular composite laminates in three-dimen- 
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sional bending (Pagano 1970), each with simple supports and 
sine-wave transverse pressure profiles over the entire upper 
surface. In contrast, for low-velocity impact problems, the 
loading is typically distributed over a relatively small portion 
of the structure (the contact footprint, Fig. 1). The loading in 
Pagano (1969) is a half sine wave in the span direction while 
that of Pagano (1970) is sinusoidal in both in-plane directions. 
This loading was found to be quite benign from a three-di- 
mensional point of view (i.e., stress gradients were small) 
when compared to a Hertzian contact load representing a 
spherical impactor. As discussed by Greszczuk (1982), when 
the contact duration between the impactor and the plate is long 
compared to the natural vibration periods, system vibrations 
can be neglected and a Hertz law relationship between applied 
force and indentation can be assumed. This relationship is of- 
ten assumed in low-velocity impact analyses. The assumed 
Hertzian distribution of applied pressure on the top surface is 

/       *\     f0'     ,     X+y> 

M1-*^r' x  y 
,2 
contact 

(1) 

where Äccuc = radius of the circular contact footprint. In the 
cylindrical bending case, the contact footprint is one-dimen- 
sional and Ac««« is the contact half-width. 

An algorithm that can accurately reproduce the stresses of 

contact footprint 

(b) Three-dimensional bending 

FIG. 1.   Cylindrical  Bending  and Throe-Dimensional  Plate 
Loading and Boundaries 
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an exact elasticity solution for a simple sinusoidal load may 
still fall far short when a Hertzian contact load is applied. 
Thus, the elasticity solutions of Pagano do not provide an ap- 
propriate benchmark for contact-type loading and a finite-el- 
ement code that compares well with Pagano* s solutions for 
sine-wave loading is not assured of being correct for 
contact-type loading. Therefore, the elasticity solutions of Pa- 
gano (1969, 1970) are extended to Hertzian contact loading in 
the present research. The contact pressure profile (Hertzian) is 
approximated by a truncated Fourier sine series. The solution 
is obtained by the principle of superposition; the solution for 
each term of the series is calculated and the stresses and dis- 
placements are summed. Clearly, for the principle of super- 
position to hold, linear elasticity must be assumed. To assure 
linearity, the total load applied is kept small (here 1 N). In this 
way, a linear-elastic benchmark for models of impact loaded 
plates is provided. 

CYLINDRICAL BENDING SOLUTION 

A first step toward understanding the response of composite 
sandwich plates to impact loads can be made by solving a 
simpler problem having many similar features to the problem 
of interest. It is evident that the low-velocity impact of a flat 
plate by a spherical indentor is a three-dimensional problem. 
Considering a slice through the thickness at the center of im- 
pact, a two-dimensional cylindrical bending analysis of that 
slice may reveal some of the important transverse effects. An 
elasticity solution that includes transverse stresses was found 
in the literature and applied here. Pagano (1969) presented an 
elasticity solution for bidirectional (0-90°) layered composite 
laminates in cylindrical bending. The solution is briefly de- 
scribed in the following paragraphs. 

In Fig. 2, a laminate composed of m orthotropic layers, such 
that the axes of material symmetry are aligned with the plate 
axes x, y, z, is considered. The body is in a state of plane 
strain with respect to the xz-plane and is simply supported on 
the ends x = 0 and x = L. A normal traction q(x) is applied to 
the upper surface z = h/2. 

For each layer, the orthotropic constitutive relations for 
plane strain are given by Pagano (1969) 

e, = Rut?, + Raat;   e2 = Rxiax + R33az (2a,b) 

7« = Ä»T«;   R,j = St] - %^,   (i, j = 1, 3, 5)     (2c,d) 
■J33 

In which Ru = reduced compliance coefficients for plane strain; 
and Sjj = compliances with respect to the axes of material 
symmetry. The equations of equilibrium for plane strain in the 
xz-plane are 

o-„ + TX„ = 0;   <r„ + TX« = 0 (3a,b) 

and the linear strain-displacement relations are 

e* = «.*;   tz = w,z;    y,z = u,z + Wj, (4a-c) 

These complete the governing equations for the problem, and 
it should be observed that all stress, strain, and displacement 
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FIG. 2.   Cylindrical Bending Plato Notation 
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components are independent of the y-coordinate. The stress 
boundary conditions on the upper and lower surfaces are given 
by 

CTt (*' 2/ = ~9(X)'   °' (*' ~2) = T" (*' ±i) = °    {5a'b) 

and the simple support conditions are 

<r,(0, z) = <T„(L, z) = 0;    w(0, z) = w(L, z) = 0     (6a,b) 

Next, we introduce the index i to identify the lamina such 
that the top lamina corresponds to i = 1 and the bottom lamina 
corresponds to i = m. Construct a local coordinate system (x„ 
z.) parallel to the global coordinate system (x, z) on the center 
of the ith lamina such that at the left end, x = xt = 0. Further, 
define /i, to be the thickness of the ith lamina. Stress and dis- 
placement continuity between lamina can be expressed as 

<tfM*.-^W+,,(*.*f («=1,2 m - 1)    (7a) 

Ob) 

^{x,=^j = u^^^j,    (/=1,2 m-l)    (7c) 

W<° {*' ~t) = M,<,+" {*' ~T)'    0- = 1. 2 «i - 1>     öd) 

Taking now a particular form for q(x), namely 

l(x) = tf0 sin(px);    q0 = constant;   p = (fia-c) 

Pagano (1969) shows that the solution of the boundary 
value problem described by (2)-(8) can be found by putting 

«Tx°=/(z)sin(px);   cr<" = -p2/,(z)sin(/«);   T£ = -p//(z)cos(pjc) 
(9a-c) 

in which the functions f,(z) are expressed by 
4 

/(z) = 2 V'*'.    ('=1.2 m) 

mH 
-(-\)% 

(10a) 

(10*0 

a, = J?g + 2Ä(,'3
);    b, = Va? - «?}«&':   c, = 2/?<I',

)    (lOc-c) 

where Aß = constants. The stresses then can be expressed as 

erf = sin(px) 2 Ajirff 

4 

of» = -p1 sm{px) ^ V* 
j-> 

TS = -p cos(px) 2 Ay/m„c"^ 
y-i 

and the displacements can then be expressed as 

p 

w, = sin(pjc) 2J AJ, I Rntrtji — 33     2 
P   e 

(11*) 

(lib) 

(He) 

(12a) 

(12*) 

which satisfy the simple support boundary conditions [(6)] 
identically. Satisfaction of the remaining boundary conditions, 



(5) and (7), leads to a system of Am unknowns A,,. This system 
is set up for the present research by placing the Ay, in a Am X 
1 vector, AA 

AAj+4(/-i) — Aji (13) 

and defining a Am X Am matrix B, which, on premultiplying 
AA produces a Am X 1 vector, BC, of the boundary conditions 

BC, = qo (14a) 

BC;+«,_„ = 0,   U = 1, 2, 3, 4; i = 1, 2 m; y * 1)    (142>) 

B     AA = BC (14c) 

For example, <TZ on the top and bottom surfaces [the left-hand 
side (LHS) of (5)] was placed into (14) by setting 

Bw = -pV"^"\   BlJ+4*.-„ = -pV"2""'-*    Q5ajb) 

The contributions to B from the other boundary conditions and 
interface continuity conditions are given in Herup [(1996), Ap- 
pendix A]. The solution, AA, is then obtained by inverting B 

AA = B'BC (16) 

The stresses and displacements are then obtained by (11)—(13) 
with AA from (16). A personal computer, running the numer- 
ical manipulation tool Mathcad, was found to be adequate to 
set up and solve the matrix algebra described [see Herup 
(1996), Appendix A]. 

Material Properties 

Material properties for the specimens used by Herup (1996) 
are obtained from the manufacturer's test data or chosen to be 
consistent with that data. These properties are chosen to allow 
comparison with the experimental and finite-element data from 
that work. The properties used in the elasticity solution cal- 
culations that follow are summarized in Table 1. In Table 1, 
the numerical subscripts for the facesheet properties (1, 2, 3) 
refer to the longitudinal, lateral, and transverse lamina direc- 
tions while for the core properties they refer to the ribbon, 
lateral, and transverse directions. X, Y, and Z are the strengths 
in the longitudinal, lateral, and transverse lamina directions; 
subscripts t and c refer to tension and compression; and Sy are 
the shear strengths. Five cases in which facesheet layups in- 
corporating four, eight, 16, 32, and 48 plies per facesheet are 
considered. The stacking sequences for these facesheets are 
(0/90)„5, with n= 1, 2, 4, 8, and 12, respectively. In each case, 

TABLE 1.   Material Propertlee 

Facesheet Core 
Variables (AS4/3501-6) (nomex HRH10-1/8-4.0) 

(1) (2) (3) 

E, 144.8 GPa 80.4 MPa 
Ez 9.7 GPa 80.4 MPa 
E, 9.7 GPa 1.005 GPa 
Gv 3.6 GPa 75.8 GPa 
G13 6.0 GPa 120.6 MPa 
G.2 6.0 GPa 32.2 MPa 
Vj3 0.34 0.02 
"ij 

0.3 0.02 
Vl2 0.3 0.25 
X, 2.17 GPa N/A 
xc -1.72 GPa N/A 
Y, 53.8 MPa N/A 
Yc -205.5 MPa N/A 
z« -205.5 MPa 3.83 MPa 
Su 89.3 MPa 142.3 MPa 
5,3 120.7 MPa 177.9 MPa 
SH 120.7 MPa N/A 

Note: N/A stai ids for not available. 

the core thickness, ä„«, is 12.7 mm and the plate width, L, is 
127 mm. 

Sinusoidal Load, Same Material and Geometry as 
Test Specimens 

As a first step, Pagano's solution algorithm described earlier 
is used with the original sinusoidal loading [(8)] but modified 
to permit the solution for a composite sandwich plate to be 
obtained. The loading in this solution is transverse pressure 
distributed as a half sine wave over the top surface of the plate 
and the supports are simple. The geometry is shown in Fig. 3. 
The solution of this problem is exact, within the assumptions 
of elasticity. Though the in-plane stress, o-„ and displacement, 
u, of the finite-element methodology of Herup (1996) do not 
precisely follow the exact solution due to the assumed kine- 
matics, the transverse shear and direct stresses from the finite- 
element solution (with equilibrium postprocessing) are within 
a few percent of the exact solution throughout the computa- 
tional domain. If this solution were the only available bench- 
mark for the finite-element code, the analyst would be tempted 
to think the finite-element solution was doing great and to trust 
it for the contact loading problem. Such a conclusion may 
prove unfounded when Hertzian contact loading is considered. 

Extension for Indentation Problem 

The sinusoidal load of the previous solution is distributed 
over the entire plate top surface, whereas the load for the im- 
pact problem is concentrated over the small portion of the top 
surface that is in contact with the impactor. To more accurately 
model the load profile of an impact problem, a truncated Fou- 
rier sine series approximation of a Hertzian contact load dis- 
tribution is applied to the elasticity solution algorithm. In this 
case, however, a FORTRAN program is used in place of the 
Mathcad template because the computational effort required 
does not lend itself to solution within Mathcad's interactive 
environment. The increased computational intensity results 
from the fact that the problem has to be solved for each term 
in the odd (i.e., sine since all cosine terms vanish) Fourier 
series and the solutions superposed. For small contact radii, 
the number of Fourier terms required to accurately represent 
a Hertzian load can be more than one hundred. Fig. 4 shows 
a Hertzian load with a small contact radius (1.59 mm) and the 
equivalent Fourier series truncated to 50, 150, 250, and 350 
terms. It should be observed in Fig. 4 that to show the differ- 
ences, only the portion of the load near and to the right of 
center (63.5 mm < x < 67 mm) is plotted; the entire plate is 
127-mm wide. The 1.59-mm contact radius is chosen for this 
illustration because it is typical of those measured for eight- 
16-, and 32-ply specimens before damage in the static inden- 
tation tests discussed in Herup [(1996), Chapter 4]. The small 
improvement in fidelity obtained by increasing the number of 
odd Fourier terms above 150 for this contact radius is not 
judged to be worth the significant additional computational 
expense. A FORTRAN program ETPSFL (elasticity theory, 
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FIG. 3.   Geometry for Slnusoldally Loaded Sandwich Plate In 
Cylindrical Bending 
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FIG. 4.   Hertzian Load Approximation by Truncated Fourier Series for 1.59-tnm Contact Radius Case 

plane strain, Fourier load) was developed for this solution 
[Herup (1996), Appendix A]. As with the previous sinusoidal 
load, the solution of this problem is exact, within the assump- 
tions of elasticity and for the approximated load distribution, 
and thus serves as a more appropriate benchmark for the com- 
putational algorithms simulating static indentation or low-ve- 
locity impact. It is compared to that obtained from the finite- 
element analysis of a plate strip loaded with the same truncated 
Fourier series load in Herup [(1996), Chapter 7]. 

Cylindrical Bending Solution to Hertzian Loaded 
Sandwich Plate 

This cylindrical bending solution to a simply supported, 
Hertzian loaded, sandwich plate strip provides both a bench- 
mark for the finite-element analysis before damage and a tool 
to judge the appropriateness of the various failure theories in 
the context of impact to composite sandwich structures. The 
cylindrical bending solution requires only a one-dimensional 
Fourier series for the loading, and thus hundreds of terms can 
be used to represent a contact-type load over a very small 
contact area without encountering solution matrix singularity 
problems associated with a two-dimensional Fourier series. 
Cylindrical bending elasticity solution stress data for two cross 
sections of the specimens (the planes defined by the 0- and 
90°-ply orientation directions) will now be studied to develop 
a general understanding of how a contact pressure is distrib- 
uted into a sandwich plate and the role that facesheet thickness 
plays in the process. This solution is found to be so valuable 
for this purpose that it suggests an entirely new study beyond 
the scope of this paper in which parameters such as core thick- 
ness, core stiffness, impactor radius, and facesheet material 
properties can all be varied and their influences presented in 
a usable form for designers of these structures. It is possible 
that rules of thumb to aid the designers in the many trade-off 
decisions inherent in any structural application of composite 
sandwich plates could result from such a study. 

Fig. 5 shows the geometry of the problem and Fig. 6 shows 
the variation of transverse direct stress cr, through the thickness 
predicted by cylindrical bending elasticity theory for the var- 
ious specimens tested in the experimental portion of Herup 
(1996). The intuitive idea that the thicker facesheets distribute 
the load over a greater portion of the core and thus reduce the 
peak core compressive stress is both verified and quantified 

> 

simple support 
boundary conditions 

*G£ Plate —x 3Qf 
1.59 mm 
 63.5 mm- 

FIG. 5.   Geometry for Cylindrical Bending Solution 

by these data. The top surface of the core in the four-ply spec- 
imens apparently experiences 56% of the peak applied stress, 
q0, which was unity. The thicker facesheets lower the peak 
stress at the top of the core to such an extent that the top 
surface of the core in the 48-ply specimens apparently expe- 
riences only 8% of the peak applied stress. 

One advantage of sandwiches with the thicker facesheets 
(which can be seen in Fig. 6) is that they will achieve a higher 
peak load before core failure occurs. This advantage is, of 
course, tempered by the fact that for a given impact energy, 
plates with the thicker facesheets experience greater loads. 
This is because the thicker plates are suffer, leading to shorter 
contact durations and higher impactor accelerations (hence 
greater force, by Newton's second law). To account for this, 
stress data similar to Fig. 6 are scaled by the forces from low- 
velocity impact experimental data [Herup (1996), Chapter 4]. 
The experimental data provides the load and contact radius at 
failure (the first major load drop). In each case, an axisym- 
metric Hertzian distribution of the load is assumed, leading to 
peak stress as a function of load and contact radius. Table 2 
shows the failure loads, contact radii, and peak stresses for 
each case. The cylindrical bending elasticity solution is ob- 
tained using the particular contact radius and peak stress from 
the experiment for each facesheet thickness. The transverse 
stress profile from this solution is an estimate of the transverse 
stress profile present at the first major load drop. This load 
drop is shown to correspond to core failure in Herup (1996). 
The elasticity result is plotted for each facesheet thickness in 
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FIG. 6. Normalized Transverse Direct Stress under Center of a 
Hertzian Load Showing How Thicker Facesheets Serve to Re- 
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Failure (Contact Half-Width was 1.59 mm and Normalization Is 
by Peak Applied Stress) 

TABLE 2. 
Stresses 

Experimental Data at Failure and Hertzian Peak 

Facesheet Energy Contact radius Failure load Peak stress 
thickness (J) (mm) (N) (MPa) 

(1) (2) (3) (4) (5) 

Four-ply 0.30 0.96 550 285 
Eight-ply 0.47 1.18 1.100 378 
16-ply 1.35 1.70 2,700 446 
32-ply 5.24 3.08 8.000 404 
48-ply 10.08 4.51 13,500 318 

Fig. 7. In this way Fig. 7 gives the elasticity solution for the 
transverse direct stress profile under the impactor at the instant 
of the first major load drop found in the experiments. The 
elasticity solution, when used in conjunction with the experi- 
mental data, allows the analyst to estimate the stress present 
in each specimen when the failure occurs. 

The scaling of Fig. 7 allows another point to be observed. 
The only compression strength data available for the core is 
from uniaxial compression and shear tests (Bitzer 1983). Uni- 
axial compression strength is shown as the vertical line in Fig. 
7. In the experiments [Herup (1996), Chapter 4], core failure 
always occurs near the interface between the core and the top 
facesheet. As facesheet thickness increases, Fig. 7 clearly in- 
dicates that the transverse compressive stress associated with 
the first major load drop decreases at the interface between the 
core and the top facesheet. None of the specimens, however, 
apparently experience core failure until this stress was well 
above the uniaxial core strength. This suggests that a maxi- 
mum stress failure criterion incorporating uniaxial core 
strength is highly conservative for predicting core failure. The 
error decreases with increasing facesheet thickness, but is sig- 
nificant for all facesheet thicknesses tested. Other criteria in- 
corporating shear are not expected to significantly improve 
upon maximum stress either, since both transverse and in- 
plane shear are zero at the center. This presents a potentially 
critical problem to any analysis intending to predict core fail- 
ure based upon stress using a uniaxial strength as the criterion 
for failure. A semiempirical maximum stress failure criterion 
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FIG. 7. Transverse Direct Stress under Center of a Hertzian 
Load Scaled to Match Peak Stress and Contact Radius for First 
Major Load Drop Seen In Experiments (for Comparison, Uniax- 
ial Core Strength Is also Plotted Indicating the Core Achieves a 
Stress Higher Than Its Uniaxial Compression Strength before 
Failure) 

incorporating a facesheet-thickness-dependent core strength is 
given in the following: 

apparent core strength = ö\; 
3    Ff. (17a) 

Sj = transverse direct stress at top of core normalized by peak 

applied stress (from elasticity solution) (172>) 

Fm = load at first major load drop (empirical)      (17c) 

Äcoouct = contact radius at first major load drop (empirical)    (1 Id) 

3 

2ir*L 
= load to peak stress conversion factor 

for Hertzian contact (17e) 

The semiempirical maximum stress failure criterion given 
in (17) allows the analyst to predict core failure from the stress 
at the top surface of the core. By providing the through-the- 
thickness transverse direct stress profile, the cylindrical bend- 
ing elasticity solution bridges the gap between the experi- 
mental data and the needed core strengths. Fig. 8 shows the 

X a 
i 

0 

-20 

-40 

-60 

-80 

-100  ■ 

-120 

— - - Uniaxial compression test 

—£— apparent core strength based on 
serri-empirical method 

40 50 0 10 20 30 

faceaheet piles 

FIG. 8.   Apparent Core Strength as Calculated by Eq. (17) 
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semiempirical apparent core strength as a function of facesheet 
thickness for the current structure. 

Fig. 9 shows the in-plane stress, ax, normalized by the peak 
applied stress for the cylindrical bending elasticity solution. 
The first and most obvious bit of information to gain from this 
scaling is that thicker facesheets lead to lower in-plane loads 
for static indentation problems. This comes as no surprise 
since thicker facesheets imply that the same load can be spread 
out over more plies, reducing the average stress in each ply. 
More interesting in Fig. 9 is the insight that can be gained 
about the relative importance of local (top facesheet) and 
global (entire sandwich) bending. Pure local bending is char- 
acterized by the linear variation of o-, through the top facesheet 
thickness and would show a neutral axis at the midplane of 
the top facesheet. On the other hand, pure global bending is 
characterized by a linear variation of ax through the entire 
sandwich and would show a neutral axis in the middle of the 
core. An effect of adding global bending <jx to a local bending 
<jx profile would be to move the neutral axis down. The po- 
sition of the apparent neutral axis (z-coordinate at which crx 

passes through zero) in the top facesheet is thus an indicator 
of the relative magnitudes of the local and global stresses. 
When the apparent neutral axis is at the midplane of the top 
facesheet, global stresses are not important. As the apparent 
neutral axis shifts down, global stresses become more impor- 
tant. When the apparent neutral axis is at the bottom of the 
top facesheet, global and local stresses are contributing ap- 
proximately equal amounts to the overall stress profile. Con- 
sidering first the four-ply data of Fig. 9, one can see that the 
apparent neutral axis is near the bottom of the top facesheet. 
Thus global plate bending is important to the four-ply in-plane 
stress ov Increasing facesheet thickness shifts the apparent 
neutral axis up (note that it is at the midplane of the top 
facesheet in the 48-ply data). This is because increasing face- 
sheet thickness increases the global bending stiffness much 
faster than it does the local facesheet bending stiffness because 

of the proportionalities shown in the following equation. This 
explains the fact that the data in Fig. 9 show progressively 
more local bending stress and relatively less global bending 
stress as the facesheet thickness increases 

A local (facesheet) bending stiffness « 
^A facesheet thickness\ 
< 2 ) 

(18a) 

while,   A global (plate) bending stiffness 

« (- + A facesheet thickness ) Gs 
(18*) 

where, typically,   -» A facesheet thickness      (18c) 

The last observation from Fig. 9 is that the top facesheet 
does have more local bending than the bottom facesheet for 
all of the facesheet thicknesses. This is the expected result 
because the core serves to relax the coupling between the bot- 
tom and top facesheet motions so the radius of curvature of 
the bottom facesheet is greater than that of the top. 

Since <JX is the principal contributor to fiber failure and has 
little contribution to the other failure mechanisms, the preced- 
ing comments apply almost directly to the influence of 
facesheet thickness on fiber failure. Fig. 10 scales the data of 
Fig. 9 to show estimates for the fiber stresses at the applied 
load that produced the first major load drop. This alarming 
plot indicates that sandwich plates of all the facesheet thick- 
nesses should have shown fiber failure prior to the major load 
drop, whereas fiber failure was not observed in the specimens 
when they were sectioned, polished, and viewed under mag- 
nification (Harrington 1994). Also, the peak compressive fiber 
stress occurs at the top surface of the plate and the significant 
fiber failure indicated by Fig. 10 should be observable on the 
surface even without sectioning the specimen. No such failure 
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was observed in Hemp (1996) or Harrington (1994). These 
data indicate that maximum stress may be an overly conser- 
vative criterion for fiber failure, but since no fiber failure has 
been observed in the experiments, ignoring this potential fail- 
ure mechanism may be justifiable on that basis. 

Transverse shear stress is the dominant driver for matrix 
cracking and delamination. Unlike fiber failure, these damage 
mechanisms have been observed extensively in all the dam- 
aged specimens. Unlike transverse or in-plane direct stress, 
shear does not have a peak in the center of the plate. To locate 
the x-dimension of the peak of transverse shear, as well as to 
show the ^-dependence of transverse shear, the shear at the 
midplane of the top facesheet is plotted against the x-dimen- 
sion in Fig. 11. 

Fig. 11 shows that increasing the thickness of the facesheets 
has at least three important effects on transverse shear and, 
therefore, on both delamination and transverse matrix crack- 
ing. The first, and most dramatic, is the reduction in the peak 
value that will serve to delay initiation of damage. The second 
is that it moves the peak value away from the plate center so 
the damages will be initiating from a location further from the 
point of application of the load. The third is that the peaks are 
broadened and flattened so that damage will not be as well 
defined and repeatable. These conjectures are based on the 
assumptions that shear dominates the initiation of damage and 
that damage can occur when shear is within some range and 
not only at a specific value. Thus a broad, flat peak puts a 
relatively large portion of the facesheet within the critical 
stress range and matrix cracking and delamination initiation 
may start from anywhere within that range. Once started, strain 
energy released in the process of damage, load redistribution, 
and stress singularities at the crack tips will bias the progres- 
sion of the damage in a way that is dependent on the initiation 
point. Though simplistic, these ideas do explain why the C- 

scans show damage in thin facesheet specimens, impacted at 
the same energies that are more consistent than those of thick 
facesheet specimens [Hemp (1996), Chapter 4]. C-scans from 
thin facesheet specimens also show more bidirectional sym- 
metry in the delamination patterns, which is consistent with 
these ideas. 

Normalized transverse shear stress at the ^-location of the 
peaks in Fig. 11 is plotted through the thickness in Fig. 12. 
This figure shows very clearly why delaminations and matrix 
cracks are found in the top facesheets but not in the bottom 
facesheets. These data are scaled to the first major load drop 
values in Fig. 13. This figure indicates that for the thin 
facesheet specimens facesheet damage in the form of matrix 
cracking and/or delaminations should precede core failure if 
indeed the major load drop is an indicator of core failure as 
found in Hemp [(1996), Chapter 4]. 

THREE-DIMENSIONAL SOLUTION TO HERTZIAN 
LOADED PLATE 

The difficulties found in relating a cylindrical bending so- 
lution to a truly three-dimensional problem could have been 
avoided if a true three-dimensional elasticity solution was 
available. Such a solution for a rectangular sandwich plate 
under a sinusoidal loading does indeed exist (Pagano 1970). 
This solution is a valuable tool for benchmarking finite-ele- 
ment or other approximate analyses. A Mathcad template was 
written to carry out the very burdensome manipulations and is 
included in Appendix A of Hemp (1996). The low-velocity 
impact problem differs from the sinusoidally loaded plate 
chiefly in the relative area over which the load is applied. The 
Fourier series representation of the Hertzian contact load used 
in the cylindrical bending solution suggests the possibility of 
applying a double Fourier series to the three-dimensional plate 
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FIG. 12. Transverse Shear Streas at Location of Peaks Found 
In Fig. 11, Normalized by Peak Applied (Transverse) Stress, 
showing Reduction In Transverse Shear Stress Brought about 
by Thicker Faceaheets (Contact Half-Width was 1.59 mm) 

to approximate the contact load. This is nothing more than 
extending the cylindrical previously described bending solu- 
tion to a third dimension. Yet, there are some difficulties. The 
coding of the solution is an extension of the program ETPSFL 
written for the cylindrical bending solution. A FORTRAN pro- 
gram called PAG3D (Pagano's three-dimensional) was written 
using, as much as possible, various names that suggest what 
they represent in Pagano (1970). PAG3D is included in Ap- 
pendix B of Hemp (1996), and its output is compared to the 
finite-element solution of Hemp. A severe limitation to the 
usefulness of the three-dimensional solution for low-velocity 
impact problems should be pointed out first; when the large 
number of odd Fourier terms needed to accurately represent 
an axisymmetric Hertzian contact load is used, the matrix 
solver fails because the coefficient matrix becomes numeri- 
cally singular. As applied to the three-dimensional problem, 
the solution procedure outlined effectively limits the number 
of odd Fourier terms that can be used to represent the Hertzian 
load to eight in each in-plane direction or 64 total terms. It is 
possible that a modified procedure in which the direct matrix 
inversion of (15) is avoided could relieve this limitation, but 
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such a procedure is not attempted for this research. The actual 
maximum number of odd Fourier terms is larger (11 X 11) 
for thin facesheet sandwiches and even larger (25 X 25) for 
thin monolithic laminates representative of the facesheets 
alone, but is considered inadequate to represent the load that 
was applied experimentally. The loads are shown in Fig. 14. 

A Hertzian load that can be marginally well represented by 
a double Fourier series truncated to a few terms is shown in 
Fig. 15. The contact radius of this load is 12.7 mm as com- 
pared to the more representative 1.59-mm contact radius of 
Fig. 14. This large contact radius implies an unrealistic tup 
radius (many meters) rather than the 12.7-mm experimental 
tup radius. In short, the three-dimensional elasticity solution 
cannot be used to interpret experimental data as the cylindrical 
bending elasticity solution can, because the contact radius of 
the two cannot be matched. Without matching contact radii, 
the applied pressure (and hence <rj for any given applied load 
are very different. Thus, any comparison between the experi- 
ment and the analysis would be meaningless. Even so, the 
three-dimensional elasticity solution with this large contact ra- 
dius does provide a benchmark for approximate solutions such 
as the finite-element code of Hemp (1996) because the loading 
on the finite-element model can be matched to the truncated 
Fourier series for which the three-dimensional elasticity prob- 
lem can be solved. That is, though a low-velocity impact ex- 
periment cannot be modeled by the three-dimensional elastic- 
ity solution, it is nevertheless useful as a benchmarking tool 
for approximate solutions that are intended to model the ex- 
periment. This application is illustrated in the following. 

COMPARISON OF FINITE-ELEMENT AND 
THREE-DIMENSIONAL ELASTICITY SOLUTIONS 

The purpose of this section is to compare the results of the 
finite-element analysis described in Hemp [(1996), Chapter 6] 
to the elasticity theory results obtained from the modified Pa- 
gano solution described earlier. In particular, the stress avail- 
able from local (facesheet on an elastic foundation) and global 
(sandwich) models are compared to the elasticity solution. One 
facesheet thickness (16-ply) is chosen for comparison here. 

The test case shown here is for the three-dimensional bend- 
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ing of a square plate. The load is located in the center of the 
plate and is Hertzian in its distribution (as approximated by a 
Fourier sine series), simulating contact with a spherical inden- 
tor (or impactor) located at the center of the plate and moved 
transverse to the plane of the plate. The applied stress is axi- 
symmetric about the z-axis (Fig. 1). In the finite-element- 
based analysis methodology, a sandwich plate is modeled us- 
ing plate bending elements loaded with a Hertzian contact 
load. Two different models are actually studied, a local model 
and a global model. In the local model, the top facesheet is 
modeled with monolithic plate elements on an elastic-plastic 
foundation (simulating the core). In the global model, both 
facesheets and the core are modeled by a sandwich element 
having stiffness contributions from each. 

To benchmark the finite-element analysis with a three-di- 
mensional elasticity test case, the 8 X 8-term double Fourier 
sine series representation of the 12.7-mm radius Hertzian con- 
tact load illustrated in Fig. 15 is used. To be sure the problem 
remains in the elastic regime, the total force applied is 1.0 N. 
The finite-element model is loaded with a Hertzian contact 
load having a 12.7-mm radius and the same total force. In 
Figs. 16-18, the 16-ply results are shown for both the global 
(sandwich) and the local (plate on elastic foundation) models. 
The displacements for the global and local finite-element mod- 
els are not comparable because of the very different nature of 
the restraints (simple supports versus simple supports plus 
elastic foundation). Nevertheless, the top facesheet stresses are 
comparable. The top facesheet stresses are shown in Fies 
16-18. 6 ' 

Fig. 16 shows how the in-plane stresses compare between 
the finite-element models and the three-dimensional elasticity 
solution. As expected, the 0° plies, having much greater x- 
direction stiffness than the 90° plies, are shown to take the 
majority of the load. Although the primary damage mechanism 
driven by in-plane stress is fiber failure (in compression near 
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FIG. 16. Comparison of Top Facesheet In-Plane Direct Stress 
o,, at the Center of the Plate for the Large Contact Radius, 
Three-Dimensional Case (12.7-cm-Square Sandwich Plate, 16- 
Ply Facesheets, 1.0-N Load, 12.7-mm Contact Radius) 

the top surface), depending on the damage criteria chosen, 
matrix cracking could also be affected. Taking the elasticity 
solution to be the correct one (within the approximation of the 
Hertzian load and the assumption that the material behaves 
elastically), it can be seen that the elastic foundation (local) 
solution is significantly better than the sandwich (global) so- 
lution, particularly near the top surface where fiber failure will 
presumably begin. An interesting observation that can be made 
from Fig. 16 is that the elasticity solution shows the stress in 
the 0° plies to be almost linearly related to z in the top 
facesheet. The elastic foundation finite-element solution is able 
to model this feature because the cubic kinematics (Palazotto 
and Dennis 1992) can represent a linear function and only the 
top facesheet is in the model. The sandwich finite-element 
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model is not able to represent a linear function through the 
thickness of the top facesheet, because the core and bottom 
facesheet represent significant property variation through the 
thickness, and thus require the familiar "zig-zag" kinematic 
relationship, which is not well represented by the cubic kine- 
matics in the model. It is true that the properties vary through 
the thickness within the facesheets, but since the lamina are 
thin and many, the error associated with averaging their prop- 
erties through the facesheet thickness is small. Thus, in a gross 
sense, the sandwich behaves as a three-ply laminate in which 
the two facesheets are considered to be represented by two 
stiff plies and the core is a single flexible ply between them. 
The in-plane displacement of such a laminate is known to take 
on a Z shape (Pagano 1969, 1970) which is not well approx- 
imated by a cubic. For this reason, it is thought that including 
zig-zag kinematics could improve the in-plane stresses of the 
sandwich model, but that the elastic foundation model would 
be less drastically improved. This is an example of the insight 
available from the present three-dimensional elasticity solu- 
tion. 

Fig. 17 shows that a, for the large contact radius case is 
marginally well predicted by either the sandwich or the elastic 
foundation model. It can be observed that the sandwich model 
does somewhat better than the elastic foundation, but either 
one will be nonconservative for a stress-based core failure pre- 
diction since the o, at the bottom of the top facesheet (z = 
-6.35 mm) is identical to the stress at the top of the core. 
Thus, the low prediction of core stress will presumably result 
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in a high prediction of core crushing load if a stress-based 
criteria for core failure is used. 

For the 16-ply large contact radius case, Fig. 18 shows the 
transverse shear stress, T„, through the thickness at the ^-lo- 
cation of the peak transverse shear stress (and v = 0). This 
location is between 9.5 and 11.0 mm away from the plate 
centerline. As shown for a smaller contact radius in Fig. 11, 
the transverse shear stress is zero at the plate centerline but 
grows quickly in the x-direction, attaining a peak near the edge 
of the applied load (12.7 mm in this case). While the sandwich 
finite-element model prediction is slightly low, the elastic 
foundation model prediction is very high. This result, com- 
bined with that of Fig. 17, indicates that for the large contact 
radius case, the sandwich model produces a better three-di- 
mensional stress result that the elastic foundation model, albeit 
nonconservative for shear. Both models correctly predict that 
the peak shear is in the middle two 90° plies. 

The three-dimensional stresses obtained from the equilib- 
rium equations and the in-plane finite-element stresses com- 
pare favorably with the elasticity solution. The sandwich 
(global) model does reasonably well for the case in which the 
load is distributed over a large portion of the top surface, but 
for the small contact radius case, the elastic foundation (local) 
model does better. Again, this insight is only available because 
of the existence of the current three-dimensional elasticity so- 
lution. 

CONCLUSIONS 

The elasticity solution is a useful tool for developing a gen- 
eral understanding of the characteristics of the stress field pro- 
duced in a composite sandwich plate by a contact-type load. 
While the three-dimensional solution can only be used for un- 
realistically large contact radii, the cylindrical bending solution 
can be used for realistic contact dimensions. The cylindrical 
bending has been shown to provide insight into the experi- 
mentally observed phenomena. In particular, the role of 
facesheet thickness in determining the core failure load was 
evident. The three-dimensional solution has been shown to be 
a valuable discriminator between different approximate solu- 
tion methodologies. 
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APPENDIX II.    NOTATION 

The following symbols are used in this paper: 

A A = solution vector {Am X 1); 
Aji = constants chosen to satisfy the governing equations; 

a,b,c, = ith lamina constitutive terms; 
= matrix used to satisfy boundary and lamina interface 

continuity conditions (4m X 4m); 
= boundary-condition vector (4m X 1); 

E, = lamina modulus in the i direction; 
Ff»] = load at first major load drop (empirical); 

f,(z) = exponential functions chosen to satisfy the governing 
equations; 

= lamina shear modulii; 
= monolithic plate thickness; 
= j'th lamina thickness; 
= sandwich plate core thickness; 

hply = sandwich plate face-sheet lamina thickness; 
L = plate width; 
m = number of orthotropic layers in the laminate; 

m„ = ith lamina constitutive term; 

B 

BC 

h 
h, 

P 
q{x) 

q* 

thk = 
u = 
w = 
X = 

x,y = 
x, = 
Y = 
Z = 
z = 

z, = 

e, = 
e* = 

7« = 
v„ = 
ux = 
vz = 
o\ = 

= IT divided by plate width; 
= applied normal traction; 
= amplitude of applied normal traction; 
= reduced compliance coefficients for plane strain; 
= contact radius at first major load drop (empirical); 
= lamina shear strengths; 
= compliances with respect to the axes of material sym- 

metry; 
sandwich plate thickness; 
displacement in the Jt-direction; 
displacement in the z-direction; 
lamina strength in the longitudinal (fiber) direction; 
plate in-plane coordinates (global system); 
j'th lamina in-plane coordinate (local system); 
lamina strength in the lateral direction; 
lamina strength in the transverse (z) direction; 
plate transverse coordinate measured from the neutral 
axis; 
ith lamina transverse coordinate measured from the cen- 
ter of the lamina (local system); 
in-plane direct strain; 
transverse direct strain; 
transverse shear engineering strain; 
lamina Poisson ratios; 
in-plane direct stress; 
transverse direct stress; 
normalized transverse direct stress at top of core (from 
elasticity solution); and 
transverse shear stress. 
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Abstract 

The response of composite sandwich plates to low-velocity impact is predicted by a displacement based, 

plate bending, finite element algorithm. 5 order Hermitian interpolation allows three-dimensional 

equilibrium integration for transverse stress calculations to be carried out symbolically on the 

interpolation functions so that transverse stresses within the elements are expressed directly in terms of 

nodal quantities. Nomex honeycomb sandwich core is modeled using an elastic-plastic foundation and 

contact loading is simulated by Hertzian pressure distribution for which the contact radius is determined 

iteratively. Damage prediction by failure criteria and damage progression via stiffness reduction are 

employed. Comparison to experimental low-velocity impact and static indentation data shows the ability 

to model some of the important features of static indentation of composite sandwich structures. In 

particular, the slope of the load displacement curve (stiffness), including contact, before damage is well 

represented. Core failure load is predicted by the analysis within ten percent of the experimental value. 

Delamination patterns predicted by the analysis are similar in shape to the delaminations observed by C- 

scans from the experiments, but are smaller for the same load. 

Introduction 

Sandwich structures have long been recognized as one of the most weight-efficient plate or shell 

constructions for resisting bending loadsfl]. The aerospace industry, with its many bending stiffness 

dominated structures and its need for low weight, has employed sandwich constructions using aluminum 

honeycomb cores extensively. The most common currently fielded sandwich constructions suffer from 

two major maintenance problems: corrosion damage to the core from trapped moisture, and low-velocity 

impact damage. The core corrosion problem can be greatly reduced by using a non-corrosive core such 

as Nomex honeycomb. Prediction of low-velocity impact damage to such structures is the subject of the 

present research. Low-velocity implies that strain rate dependencies of the material properties can be 

neglected. This assumption is made for the current research. 



Closed-form methods for predicting the response of laminated composite plates to mechanical loads are 

limited to linear solutions (with many simplifying assumptions) for specific geometries, lay-ups, loads, 

and boundary conditions. Experimental testing can yield response data for a particular plate and load, but 

it is not generally practicable, in terms of time and monetary expense, to experimentally characterize the 

effects of a wide range of variables. In contrast to experimental testing, numerical techniques like the 

finite element method (FEM) have been applied to plates and shells of different shapes, sizes, 

compositions, loadings and supports without the expense and lead time required for testing. The accuracy 

and practicality of FEM are dependent on the governing theories, model complexity, mesh refinement, 

user's skill (in the representation of the geometric structures, material properties, boundary conditions 

and loads), and a given computer's memory capacity, speed, and precision. The failure modes commonly 

observed in low-velocity impact to composite sandwich plates (fiber failure, matrix cracking, 

delamination, core crushing[2]) are driven by three-dimensional stress states. This implies that any 

model representing low-velocity impact to composite sandwich plates should be capable of accurately 

predicting three-dimensional stresses. The obvious approach is to employ a three-dimensional FEM, but 

the detail required in such a model very quickly overwhelms the computational capacity available to the 

analyst. A two-dimensional FEM that can accurately represent low-velocity impact to composite 

sandwich structures can dramatically reduce the computational expense. The review papers of Cantwell 

and Morton[3] and Abrate[4] are excellent starting points for review of the low-velocity impact 

resistance of monolithic laminates as are the "Previous Work" chapter of Tsang's Ph.D. thesis[5] and the 

review paper of Noor et al[6] for composite sandwich structures. 

The finite element program developed for this research is capable of modeling composite sandwich 

plates while extracting quasi three-dimensional stress values by employing the differential equations of 

equilibrium for a deformable continuous body[7]. Geometric nonlinearity and transverse shear effects are 

modeled. Contact between the plate and the impactor is also modeled. Damage initiation and progression 

criteria are employed,[8-ll] and the code reduces the stiffness of the damaged elements to model the 

effects of matrix cracking, delamination, fiber failure, and core crushing damage progression. 

Approach 

The approach for this effort involves a local/global method. The local model represents a single facesheet 

and its supporting core by plate finite elements (the facesheet) with an elastic foundation (the core). The 

global model represents the entire sandwich structure by plate finite elements in which the facesheets and 

the core contribute to the stiffness of each element. In both cases the plate elements incorporate cubic 



kinematics and in the local model a post-processing algorithm integrates three-dimensional equilibrium 

equations producing a quasi three-dimensional stress tensor. Contact between the plate and the tup is 

assumed to produce a Hertzian pressure distribution under the tup. In the local model, the transverse 

strains (obtained from the three-dimensional stresses) are integrated to establish the contact surface 

between the plate and the impactor. The contact radius is a product of the local model and is obtained 

through an iterative algorithm in which the three-dimensional shape of the top surface of the plate under 

the load is made to conform to the known shape of the tup. In this way, an iterative scheme produces a 

stress field satisfying compatibility (via the plate finite element model), the contact problem, and the 

approximately satisfying the three-dimensional differential equations of equilibrium for the plate. 

Once this contact radius is known from the local model, it establishes the distribution of load on the 

global model since the total force is known for the given load increment and the form of the distribution 

of the force is assumed to be Hertzian. The sandwich plate (global) FEM is then run to obtain the 

midplane displacement of the sandwich. This is required because the local model includes no sandwich 

plate midplane displacement and it is desired to compare displacement with the experimental data. In 

particular, the top surface displacement is taken to be the sum of the top surface displacement in the local 

model (for which sandwich midplane displacement was zero) and the midplane displacement from the 

global model. 

The six components of stress within the top facesheet resulting from this procedure are used with failure 

criteria to update the constitutive relationship in the local finite element model. When the transverse load 

of the plate reaches sufficient magnitude, the failure criteria indicate localized failure of the composite 

sandwich structure via fiber failure, matrix cracking, and delamination. The displacement from the local 

finite element model establishes an average core stress by an empirical elastic-plastic relationship 

between core strain and core stress derived from the core manufacturer's uniaxial compression test 

data. This core stress provides the foundation pressure distribution that supports the facesheet. The 

displacement from the local finite element model divided by the core thickness is taken to be the average 

core strain. The failure of the core is predicted by a simple maximum strain criteria in which the core is 

assumed to fail (core crushing/crippling) when the strain reaches the magnitude of the failure strain in a 

uniaxial compression test[10]. In this way, appropriate failure criteria[ll] estimate both the modes and 

extent of the failure at any given load increment. As the individual plies or interfaces fail, a stiffness 

reduction routine simulates the varying material response, smearing the effect of the damage over the 



damaged element(s). As the core fails, the foundation stiffness for a given element is reduced to simulate 

the fact that a crushed/crippled core does not provide transverse support to the facesheet. 

Theory 

The element-independent portion of the finite element development as well as the geometric nonlinear 

iteration method applied for this research have been documented previously[12,13]. Only the new 

developments will be considered in the following paragraphs. 

Geometry and coordinate systems 

Figure 1 illustrates the geometry and coordinate systems which were used for modeling sandwich plates. 

The facesheets are composite laminates of arbitrary stacking sequence. The facesheets are perfectly 

bonded to an assumed homogeneous core of Nomex honeycomb. Both X-Y-Z (XrX2-X3) and L-T-Z 

represent orthogonal systems. The longitudinal and lateral directions correspond to the principal material 

directions of an orthotropic ply. As shown in Fig. 1, a ply's orientation angle 9 is the angle from X to L 

(or from Y to T). All plates analyzed in this research were symmetric about their midplanes (z=0), that is, 

6(z) = 9(-z). This symmetry was chosen for convenience; it is not required by the theory. 

Plate assumptions 

Several assumptions are inherent in most plate analyses and are retained or relaxed in the present 

research. A plate is assumed to be in a state of plane stress at distances from the datum surface. As a 

result, all transverse normal stresses a^ are zero, and plate behavior can be described by displacements 

and rotations at and relative to the midsurface. Transverse normal strains e^ are nonzero in general, but 

they are consequences (due to Poisson effects) of the other strains and do not affect the stress state. 

Transverse shear strains s^ and s^ are assumed to have parabolic distributions in the Z-direction. This 

distribution satisfies the boundary conditions of zero transverse shear on the top and bottom plate 

surfaces. 

Various plate theories are available to describe the through-the-thickness variation of strains. 

Displacements of the midplane of the plate are used to characterize displacements throughout the plate. 

Polynomial functions of z are most often employed with the order of the theory based on the highest 

order polynomial present in the kinematics. The order of the transverse shear is typically one less than 

the order of the displacement function, so for example, a parabolic shear deformation theory will require 

cubic terms in the in-plane displacements. Parabolic shear deformation theory was used for this research 



due to its presumed ability to capture the most important features of the transverse shear with relatively 

few degrees of freedom. Displacement functions used in this research are 

u(x,y,z) = u + ZVJ/J + z3k(\\il + H\, ) 

v(x,y,z) = v + z\\)2 + z3k(y2 + w,2) 
/ N (1) 

k = -4/(3h2) 

where   the italic quantities u, v, and w are the midplane displacements which are independent of z so 

that, for example, u = u(x,y). 

Each point within the plate's midsurface has seven displacement components as shown in Fig. 2. 

Displacements u, v and w are translations in the X, Y and Z directions. The terms w,, and w,2 are physical 

slopes of the midsurface in the X-Z and Y-Z planes, while v|/; and y;, are rotations due to bending alone 

in those respective planes. Transverse shearing in a single plane is described by the algebraic sum of the 

two rotations. Translational displacements away from the midsurface are evaluated through the previous 

plate kinematics. 

For this research, von Karman strain-displacement relations are used. Though the plate displacements are 

expected to be small, the deflections of the top surface of the plate in the contact region are not. In 

particular, the solution is expected to be improved by inclusion of the slopes of the midplane in the 

strain-displacement relations. The von Karman-type strain displacement relations are[12] 

e, =u„ + lw„2 

£2 =v,2 + i-w,2
2 (2) 

86 =U,2+V,!+W„W,2 

These can be expressed in terms of the current kinematics as 

6, =w„+ZM^i+Z3*(Vi,i+M;>ii) + iw'M2 

e2 -v,2+zv|/2,2+z3/:(M/2,2+w,22) + iw,2
2 (3) 

s6=«^+v,1+z(vj/1^+\|/2,1)+z3*(\|/1,2+v|/2>1+2w,12) + w„w,2 

It is convenient at this point to rewrite Eq. (2) as an operator on the displacements. This notation 

will simplify the development of the equilibrium equations later on. 
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where da = d/dxa, c = 1 for von Karman strain displacement relations or c = 0 for linear strain 

displacement relations. 

Constitutive Relations 

Before damage, all ply materials are assumed linearly elastic and orthotropic. The three-dimensional kth 

ply constitutive relations for stress and strain are: 
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where the numerical subscripts on the stress and strain represent the following indexing of the stress and 

strain tensor components: 

[a] = 

W = 

°6      °5 

2E6 

285 

O, 

■xy 

is is. 2&6 2 °5 

£2 284 

2£4        83 

■xy 

yy 

■yz 

yz 

o\ 

XX 

xy 

l"1 xz 

ir xy 

iy yy 

21 yz 

2~f xz 

lY yz 

8* 

8xt £*y 
Ezx 

ev syy *yz 
8z* *yz e*_ 

(6) 

th and the k    ply constitutive matrix [Q]k is transformed to the laminate axis system by the modified 

direction cosine matrix for the k   ply, [T^. 

|QJ-[T1[Q1[T1
T (7) 

The in-plane k   ply constitutive relations for stress and strain for the originally assumed transverse direct 

stress (cr3 = 0) are a simple contraction of the three-dimensional constitutive relations: 
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(8) 

Transverse stresses 

To obtain the transverse stress components this research abandoned the constitutive relations for 

calculating aa and a^ in favor of satisfying the three-dimensional equilibrium equations with the FEA 

in-plane stresses as a means of estimating both transverse direct stress az and transverse shear stresses 

a^ and a^. The stresses thus obtained are an improvement over those obtained from the constitutive 

equations alone[12]. The three-dimensional equilibrium equations can be expressed in the x-y-z 

coordinate system as 

+CT-.v+cr
Zr.z 

= 0 xx ,x       xy'y (8a) 

0xy>x+csyyy+<3' yzn ~ ^ 

Gxz'x+Gyz'y+^zz'z- ® 

(8b) 

(8c) 

The first two equilibrium equations, (8a) and (8b), each contain a single unknown and can be 

readily integrated through the thickness with traction free boundaries on the surface of the plate and 

(potentially) on any delaminated ply interface to obtain a^ and a^ through the thickness (A) of the plate. 

That is, for any given in-plane coordinate (x,y), 

(9) 

In Eq. (9), the integration must be done on a ply-by-ply basis. With these quantities known, in- 

plane (and with the von Karman terms, transverse) derivatives can be taken and the third equilibrium 

equation can be integrated with a traction free boundary on the lower surface to obtain the transverse 

direct stress, a^. The integration involved is: 



a*w= jl_t(ra *>*&-* *>><£>))% (10) 

The integration given in Eq. (10) assumes continuity of transverse direct stress across ply interfaces. The 

integration is carried out ply-by-ply from the bottom surface (zero stress) to the top. 

Integration of the three-dimensional equilibrium Eqs. (8) is complicated by the von Karman type strain 

displacement nonlinearity. The following highlights the complication and the developments needed to 

handle it. The in-plane stresses are obtained from the FEM displacement solution by applying the 

constitutive relations and strain displacement relations to the displacement vector, q. In terms of the 

midplane displacement component vector, q, the assumed displacement field is 

u l z3k 
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z3k z + zk 

With these kinematics, the von Karman strains Eqs. (4) become 
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(12) 

where the nonlinear terms have been isolated into a separate matrix in order to provide insight into their 

role in the development. The in-plane strain derivatives can be written 
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in which the 6x7 operator matrix (including linear and nonlinear portions) has been defined as [dd]. 

Writing the midplane displacement vector as q, and considering the equilibrium equations and the stress- 

gradient/strain-gradient constitutive relation, the transverse shear stress gradients can be written as 

4,3 

f5,3 
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2x6 

M 
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(14) 

In Eq. 14 it can be seen that the whole of the z dependence (for any given ply) is contained in the [99] 

operator. The integration of Eqs (9) is carried out on the nonlinear operator [88] symbolically (outside 

the finite element solution) and the evaluation of transverse shear stress is reduced to algebraic 

manipulation within the finite element code. In this way, the three-dimensional equilibrium equations 

have provided an alternative means to obtain the transverse shear stresses without the standard use of the 

constitutive relations, i.e., 

Qi6   Q12   226   Q22   ?66   Q26 

Qll   Ql6   Q12   Q26   Ql6   Q66. 
lfd}zq (15) 

as opposed to[ 12] 

-   nk 
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0   0   0   0   1    0   1 
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2(1+ 3kz2)q (16) 

It should be observed that the transverse shear stress obtained in this way is forth-order in z as compared 

to parabolic for the standard constitutive solution. The third equilibrium equation, Eq. (10), requires in- 

plane derivatives of these stresses. Here the nonlinear portion of the [88] operator complicates the 



Situation. Taking derivatives of the integrated [dd] times q expressions of Eq. (15) (in which both the 

operator and the vector have in-plane coordinate dependencies), the third equilibrium equation solved for 

the transverse direct stress gradient becomes 

n ik 
'd{!fd}zq) 

'3,3 
k = I Q16   Q12   Q26   ?22   Q«   Q26 

LQH  Qi6  Q12  Q26  Qi6  QeeJ 

dx. 

ii^yzq) 
dx{ 

(17) 

and integrating through the thickness once more, 

a,   = Qi6   Q12   Q26   Q22   Q<56   Q26 

Qll   Ql6   Q12   Q26   Ql6   Q66 
(1.8) 

where the integrations are again carried out symbolically, so that transverse direct stress is also a simple 

algebraic manipulation within the program. It should be observed that the transverse direct stress 

obtained in this way is fifth-order in z as compared to zero for the standard constitutive solution. 

Finite Element Solution 

With the assumed kinematics, the only essential active degrees of freedom are those related to the 

midplane displacements, slopes, and rotations of Eq. (1). The analysis reduces to that of parabolic shear 

deformation theory, and rectangular plate elements with four nodes and 28 degrees of freedom (seven per 

node as in figure 2) could be used. The geometry of an individual element and the representation of its 

global, local and natural coordinates are shown in figure 3. 

Displacements within the given element are interpolated from the nodal displacements through 

appropriate shape functions. The displacement field for w requires C1 continuity (as defined in the 

textbook by Cook et al, therefore cubic Hermitian shape functions have been used in previous research 

for nodal displacements w, w,x and w,2. The interpolation can be represented as, 
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w£,r]) = [Hl    H2    H3    H4] (19a) 

Hr = lAx^d+^^p^^-lXl+nKti) (19b) 

?K = { W      WM       W>2 JK ^}K (19c) 

where K=l through 4 represent the local node numbers for an element found at global position (x,y). %K 

and r\K are the values of the natural coordinates at node K. Thus Eq. (19b) represents 12 cubic 

polynomial interpolation functions. These are determined as follows. Defining a function for each degree 

of freedom, m (m= 1,2,..., 12), 

">„2   , 

(20) 
Hmß,Ti) =am + a*S + a™Ti + a^2 + a*^ + a^2 + 

imP3j.omP2n_i_omi:^2_Lo'n»,3   , „me3^,  , „mc„3 
12 

&y + *yr\ + a^n2 + a>3 + a^3n + a^r,3 

in which the coefficients are different for each degree of freedom, its in-plane derivatives are readily 

evaluated as, 

""r3 
12 

2' 

Hm,5 (^,7!) =a> 2a^ + a^ri + 3a7^2 + 2a^ + a^2 + 3a^2T! + a;2n 

H% G.T,) =a* + a^ + 2a> + a^2 + 2a^ + 3a>2 + a^3 + 3a^n 

We define a vector of the coordinates for each degree of freedom, m, 

AA    =|a1,a2,a3,...,a121 

(21) 

(22) 

And define an 12-dimensional vector function of the coordinates for each degree of freedom, m, 

containing the interpolation functions and their derivatives evaluated at the nodes, 

Hm(^1,Ti1),Hm,5^1,Tll),Hm,n(^,T1l),...; 

Hm(^,Tl4),H
m,|(^4,1l4),H%(^4,1l4) 

HH„(AAm) = (23) 

We now let that vector function take on values of a unit basis vector for each degree of freedom, m, i.e., 

HHJI(AA",)=8S". (24) 
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Which we solve for the coefficients AAm for each degree of freedom, m. With these then Hm is fully 

defined and can be placed in the relationship given in Eq. (19b) by separating them out by nodes. 

The other displacement fields only need C° continuity and employ Lagrangian shape functions: 

(25a) 

"(x,y)" *i 0 0 0   . .. N4 0 0 0" h v(x,y) 0 JV, 0 0   . ..    0 ^4 0 0 <1? 

Vi(*,y) 0 0 tf. 0   . ..    0 0 ^4 0 
< 

<7i 

}v2(
x>y\ 0 0 0 *x   • ..    0 0 0 ^4 ?4 

^K=ia + ^)d+TlKTl) 

<7K    = {"     V    \|/,     V|/2}J 

(25b) 

(25c) 

The formulation of such an element and the solution of the resulting finite element problem for 

static analysis is fully described in the textbook by Palazotto and Dennis[12]. 

Higher order element development 

The 4-noded, 28 degree-of-freedom element[12], used as the starting point for this research, employs 

shape functions that are at most cubic polynomials in the in-plane coordinates. In the displacement 

based, plane stress, finite element formulation, the transverse direct stress is assumed zero and the 

transverse shear stress is assumed to be related to the transverse shear strains via constitutive 

relationships. This is to say, the element is two-dimensional, and the assumed kinematics limit the 

accuracy of the available transverse stresses. To provide better transverse stresses, the current research 

solved the finite element problem to obtain displacements (and strains), and then used constitutive 

relationships to obtain in-plane stresses, and finally used three-dimensional equilibrium equations to 

obtain transverse stresses. Since the three-dimensional equilibrium satisfaction did not affect the finite 

element solution, it can be considered a post-processing algorithm. The equilibrium post-processing in 

the present research required third derivatives of the in-plane and shear displacements and fourth 

derivatives of the transverse displacement. This can be observed in equations 18. Here the interpolation 

used for the displacement vector becomes important. Clearly, if the displacement vector contains at most 

cubic polynomials (as it does in the 28 degree of freedom element of [12]) and third and fourth 

derivatives are taken of it, little will survive and the transverse stresses of equations (15) and (18) have 

little hope of accurately representing the three-dimensional effects. The approach taken for this research 

to get higher-order midplane displacement functions for equations (15) and (18) was to increase the order 
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of the polynomial shape functions representing the displacements inside the element. This required a new 

element with more degrees of freedom at the nodes. The capability to use the 28 degree of freedom 

element was retained by writing the code to allow the user to select the order of the interpolation 

polynomials for the w, \\iu and vj/2 displacement functions. In particular, 3rd or 5th order polynomials 

could be chosen for w, while linear or 3rd order polynomials could be chosen for \\i{ and \|/2. Linear 

interpolation was by Lagrangian functions as described in [12] providing C° continuity while Hermitian 

functions provided C1 and C2 for the 3rd and 5th order interpolations respectively. The terms included in 

the Hermitian interpolation polynomials are illustrated in figure 5. 

The 3r order Hermitian functions are precisely the same as those defined above for w, but for the 

higher order elements they can be applied to \\i{ and \\)2 as well as w. Interpolation using the 5th order 

Hermitian interpolation functions can be represented as, 

w(x,y) = [Hl    H2    H3    H4] (26) 

l?4 J 
in which each HK is now a 1x6 row vector rather than the 1x3 vector shown in equation (18) and, 

qK = {w   w„    w,2    w,n    w,l2    w,22}l (27) 

Thus equation 26 represents 24 5l  order polynomial interpolation functions. These are determined as 

follows. Defining a function for each degree of freedom, m (m=\,2,...,24), 

Hm(^r,) =a^ + a™£ + a"r| + a^2 + a^n + a*r|2 + 

a^3 + a^2r| + a^T]2 + a™n3 + 

a^4 +a^3T, +a™4Y +a^3 -fa^4 + (28) 

a^5 +a^
4n +a^Y +a^V + a>4 + a^5 + 

in which, as before, the coefficients are different for each degree of freedom, its in-plane derivatives of 

concern are now, 
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H" 

H\ (29) 

Hm, in 

We again define a vector of the coordinates for each degree of freedom, m, 

AA   =|a,,a2,a3,...,a24| (30) 

and define an 24-dimensional vector function of the coordinates for each degree of freedom, m, 

containing the interpolation functions and their derivatives evaluated at the 4 nodes, 

HH^AA"1) = • • * ) 

Hm(^4,Ti4),H
m,5 £4,T)4),U\ &,r\4), 

H-^(^,Tl4),H"^(§4,Tl4),H
,"nln(^4,Tl4) 

(31) 

We now let that vector function take on values of a unit basis vector for each degree of freedom, m, i.e. 

HH„(AAm) =S; (32) 

Which we again solve for the coefficients AAm for each degree of freedom, m. With these then, Hm is 

fully defined and can be placed in the relationship given in equation (26) by separating them out by 
rth nodes. The 5   order Hermitian shape functions thus derived are, 

H{ = 

(-l+^X-l+^-Tn-Tn2 +3n3 +3n4 -%+2r£-%2 +2nV2r£2 +2rft2 +%3 +3^J 

^(-i+^(-i+nXi+^-5+2n+2n2+2^+3^2) 

i(-l+r1)
!(-lHXl+^)(-5+2ri+3n2+24+^2) 
x(_1+TlX_1+^(l+^ 

(-l+,J(-l^Xl^ 32' 

(33) 
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H2 = 

i(-i+TiXiHX-8+7Ti+7n2+2^+2n^-3n3-3n4-^+7^2-2n42-2n2^+^3-^T 

^(-i+t1)
2(i^X1^)(5-2n-3n2+24-^2) 

(34) 

#3 = 

X(l+11Xl+^X8+^- V +2^-2^-3n3 +3n4 +7^-7^2 -2rß2 +2ift2 -%3 +3*4] 

(l+^(l+71X-l+^X5+2n-2T12+2^-^2) 

L(i+n)2(i+^X-i+nX5+2n-3n2+24-242) 

^(-i^Xi^c-i^Xi+tf 
^(-1+^(1^X1+^ 

32' 

32' 
(35) 

H4 = 

i(i+11X-i+^X-8-7n+7n2 +2^-2n2^+3n3 -3n4 +^+%2 +2r£2 -2n2^2 -a* +^4JT 

i(-i+^(i+T1Xi+^X5+2n-2n2-^-342) 
i(1+T1)

2(_l+^X-l+TiX-5-2T1+3n2+2?+242) 

^(1^x1+^(1-^ 
M-^X^(-i+^<K) 

(36) 

Nodal degrees of freedom for the linear case consisted of the values of displacement functions at the 

nodes. Nodal degrees of freedom for the 3r order Hermitian interpolation polynomials consisted of the 

values of displacement functions as well as the slopes of those functions at the nodes. Nodal degrees of 

freedom for the 5l order Hermitian interpolation polynomials consisted of the values of displacement 

function, the slopes of that function, and the second and cross derivatives of the function at the nodes. 

Allowing the user to select the order of the interpolation polynomials for the w, \yh and \\i2 independently 

provided the possibility of using elements having 7, 9, 10, 11, 12, or 14 degrees-of-freedom per node. 

Though the code is capable of all of these elements, it was only exercised for this research using 7, 11, 

and 14 degrees-of-freedom per node. After checking out the transverse stress results (via equilibrium) 
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using these, the 14 degrees-of-freedom per node element was settled on for the remainder of the work. 

The element with 7 degrees-of-freedom per node has nodal degrees-of-freedom u, v, w, w,x, w,y, \j/1} and 

v|/2. The element with 11 degrees-of-freedom per node has nodal degrees-of-freedom u, v, w, w,x, w>y, v|/l5 

V\,x, W\,y, M>2> Wzx> and vj/2>r The element with 14 degrees-of-freedom per node has nodal degrees-of- 

freedom u, v, w, w,„ w.y, wtxx, wixy, w.yy, \\i), \\i lx, \\>ly, \\i2, i|/2;t, and \\iZy. All elements used 5x5 point 

Gauss quadrature. These three elements and their nodal degrees-of-freedom are illustrated in figure 6. 

Generalized Newton-Raphson method 

For this research, geometric nonlinearity of the response of a sandwich structure to load was allowed by 

a generalization of the Newton-Raphson method. Letting the displacement be represented by the vector 

q, the nonlinear stiffness of the structure be represented by the matrix K(q), and the applied load be 

represented by the vector R, equilibrium of the structure with the applied load can be represented by the 

matrix-vector equation, 

K(q)q = R. (37) 

When material nonlinearities are also present (as in the case of damage in the current research), analysis 

must proceed in an incremental manner because the solution at any given displacement may depend not 

only on the current displacement but also on the previous loading history [14]. The problem is linearized 

over any increment of load by considering two stiffness matrices KT(q), and Ks(q), which represent the 

tangent and secant stiffnesses. An iterative procedure is employed for each load increment, /, to solve for 

q,. Let q , be the converged displacement vector for the (/-l)* load increment R,.t. That is, 

R,.1-Ks(q°,)q0,«0 (38) 

Then when the load is incremented, the solution is no longer in equilibrium, 

R, - Ks(q°,)q0, = residual force * 0 (39) 

We desire to modify the displacement vector in order to get the structure in equilibrium with the new 

load. This update is done by solving, 

KT(q°,)Aq - R. - Ks(q°,)q0,-, (40) 

for Aq and updating q,. 

q1,-= q0/+ Aq. (41) 
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For iteration stepy we solve, 

KT(qJ-li)Aq = R, - K^q^'Oq^1,-, (42) 

and update q„ 

qJi = qJ~\ + Aq . (43) 

We continue this process until, 

 < convergence tolerance, (44) 

W 
in which the summations over n represent summations over each degree-of-freedom in the vector q. So 

that, 

R,-Ks(q^)qA«0, (45) 

and then set, 

q°/+i = qJi, (46) 

and proceed with the next load increment, i+l. Terminate when load increment R, is at least equal to the 

maximum load required for the given analysis. 

Every quasi-three-dimensional case study in this research considered a square plate with simply 

supported edges (u and v translations are free). Since all ply orientations were either 0 or 90 degrees, it 

was only necessary to generate finite element meshes for a single quadrant of each plate by prescribing 

bi-axial symmetry. Figure 7 shows the displacement boundary conditions which were applied to each 

square quarter-plate. In addition to the boundary conditions shown in figure 7, the models using cubic 

Hermitian shape functions for \\ix and \\i2 (11 DOF and 14 DOF) had VJ/^J and i}/22 set to zero on the 

simple support boundaries and i|/12 and vj/2;i set to zero on the symmetric boundaries. The 14 DOF model 

used 5 order Hermitian interpolation for w and had the additional boundary conditions ofw,u and w,22 

set to zero on the simple support boundaries and w,12 set to zero on the symmetric boundaries. 
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Failure Criteria 

Progressive failure analysis of composite structures with arbitrary lay-ups and loading requires 

both a laminate stress analysis model and a failure model that can account for general states of stress and 

modes of damage. After pointwise stresses in each layer of the composite are known from laminate 

analysis, failure of the composite is predicted either by employing a phenomenological failure criterion at 

the macromechanical (lamina) level or by relating the lamina stresses to the stresses in each constituent 

of the composite and employing a failure criterion at the micromechanical level. Micromechanical 

criteria are not considered in this research. Failure criteria are used for determining the extent of matrix 

cracking and core damage as well as predicting the onset and progress of delamination. These were 

compared with one another and with the experimental results in an attempt to determine which are best 

for the particular mode in question. In this report, Hashin's failure criteria [8] (shown in Appendix) is 

used. 

Matrix cracking and core damage. 

With the improved stress values anticipated from the three-dimensional equilibrium integration, 

stress-based failure criteria looked particularly promising for this research. The progression of matrix 

cracking and core damage was assumed to be governed by load transfer associated with previous failures, 

so that the failure criteria combined with a reduced stiffness routine was used to follow the progression 

of damage 

Delamination. 

Two classifications of analyses into which the published work can be separated are damage 

mechanics and fracture mechanics. Damage mechanics, or progressive degradation modeling, describes 

the damage with damage state variables, cracks are not directly modeled. Stress-based damage evolution 

laws are typically used to model the progression of damage. The analysis can begin without any damage. 

Fracture mechanics, on the other hand, follows the growth of a particular crack. No crack initiation is 

predicted, instead an initial crack is assumed and its progression is sought. A Griffith type energy release 

rate-based criterion is typically used to predict the growth of the crack. The scales of these two 

classifications of analyses are typically very different. Fracture mechanics often requires a smaller scale 

since a particular crack, rather than a multiply cracked lamina for example, must be modeled. The 

delamination damage progression tool used in this research was of the damage mechanics classification. 

A stress-based failure criterion indicated delamination and a stiffness reduction was in the lamina 
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adjacent to the indicated delamination was used to model the effect of the delamination on the response 

of the structure. 

Contact Problem 

The interaction between the flexible plate and the near-rigid hemispherical tup is a very important facet 

of the low-velocity impact problem for composite sandwich panels. The force that the tup applies to the 

plate must be distributed over some area (contact area) so that finite stress is induced in the plate. The 

induced stresses produce local deformations in the plate that tend to conform the plate surface to the tup 

surface, changing the contact area. Since the contact area influences the stress and the stress influences 

the contact area, the contact problem is evidently non-conservative. The non-conservative nature of the 

contact problem was neglected. 

The quasi-static assumption made here simplifies the approach by making the tup force a program 

input rather than an unknown. The problem is reduced to that of an indentor in static equilibrium (at any 

given load) with a deformed (and perhaps damaged) plate. In order to load the finite element model 

simulating this event, a Hertzian contact law was employed to distribute the tup force over the contact 

area. This contact law is axisymmetric (elliptical or proportional to distance from the axis of symmetry 

to the 3/2 power). This contact law idea has its roots in isotropic analyses where it has proved valuable. 

The validity of the assumed axisymmetric pressure response of anisotropic plates to a hemispherical 

indentor or tup is certainly questionable, since the plate properties are directional. For tup radii that are 

small compared to the global curvature of the plate under load, the contact radii will be small and the 

particular form of the contact pressure profile may be less important than the total load and the area over 

which it acts. These two parameters, load and contact area, can be experimentally correlated to verify 

that the analysis is distributing the load in a way that simulates the true load distribution of the 

experiment. It should be kept in mind that the spherical indentor is itself a simulation of the generally- 

shaped impactor (e.g. stone, dropped wrench, or other hard object) that these structures will encounter in 

service. 

The following describes the impact event which is of interest, and the static contact algorithm 

employed for this research. 

A moving rigid mass (the tup) makes contact with a simply-supported, stationary, laminated 

composite plate at time t = 0. The progress of the tup is impeded by the presence of the plate. For the tup 
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to continue its motion, it must move the plate or deform it. Rigid body motion of the plate is prevented 

by the supports. The deformation of the plate stores elastic (and possibly, plastic and damage) energy 

until the kinetic energy of the tup is reduced to zero (the tup does work on the plate). The stored elastic 

energy then does work on the tup, accelerating it back up. In both cases, the work is done by the force 

between the two bodies moving through a distance. Force then can be considered the actual load applied 

to the plate, while the distribution of that force (pressure profile or "footprint") is determined by the 

radius of the indentor and the local stiffness of the plate. The quasi-static assumption has removed time 

from the picture. 

Let the x-, y-, and z-direction displacements of the plate for a given tup force, F, be \ix(x,y,z,F), 

u2(x,y,z,F), and u3(x,y,z,F) to distinguish them from the midplane displacements u{x,y,F), v(x,y,F), and 

w(x,y,F). Let the vertical displacement of the center of the contact area (the point (0,0), where the tup and 

the plate first touch) be, 

i%(0,0,F) = w(0,0-|,F) (47) 

Assume that when F is zero the configuration is that of figure 8 and the plate has just made contact with 

the tup. The plate deflection is zero when F is zero. Choose some small interval of load, AF such that no 

damage occurs below F = AF. The portion of the event between F = 0 and F = AF is then of no concern 

to this analysis. Choose also some small radius of contact, ^0„,ac„ and assume that the load, AF, is 

distributed over the contact area as, 

°' r> ^contact 

q(r) = 

V contact 

(48) 
3F 

/7t K contact 

Apply the first AF, so that at load F = AF the tup has moved a distance: 

w,op(0,0, AF) = w(0,0 ,-|, AF) (49) 

in which K^F) is the nonlinear effective plate stiffness including both the plate bending stiffness and 

the contact stiffness. Neglecting the transverse strain, of the plate, the two-dimensional finite element 

solution without the equilibrium integration produces the situation illustrated in figure 9. 
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Notice that this implies that the top surface and midplane of the plate move together with the tup. 

This effectively equates the motion of the top of the plate with that of the midplane. Though this 

assumption is common for plate problems, it is clearly wrong for transverse impact. Equilibrium 

integration is used to improve on these assumptions. 

When the load is applied to the finite element model, the resulting plate displacement produces a 

response force from the stiffness of the plate (via FEM) as well as a transverse direct strain profile 

through the thickness under the point of impact (via constitutive relationships and transverse stresses 

found from the equilibrium equations and the in-plane stresses from the FEA). Call this first iteration 

value of the force F! and strain 83. That is, for a compressive strain, the top surface moves toward the 

midplane (see figure 10). For any given load F, call this relative motion Ah. 

J.-H/2 

e3(*,y,z)dz (50) 
0 

This integration is carried out for all Gauss points (where stresses are calculated) within the contact area 

prescribed by the assumed contact radius, Rc0„/ac„ and added to the midplane displacements at those 

points to produce a top surface deflection profile under the tup. 

w,op(x,y) = Ah(x,y) + w(x,y) (51) 

The total displacement of the top surface illustrated in figure 10 does not, in general enforce the 

condition that the tup is rigid and the plate can not occupy the space occupied by the tup. Assuming the 

top surface of the center of the plate is in contact with the surface of the tup, this constraint is simply that 

the top surface must displace at least as much as the surface of the tup. The surface of the tup is 

illustrated in figure 11. The constraint can be expressed as, 

wtop(x,y,F) > wlop(0,0,F)- R +VR2-*2-?2 (52) 

where R is the tup radius and the inequality in equation (52) implies an iterative approach and enforces 

the condition that the surface can not move into the space occupied by the tup (rigid spherical contact 

surface). 

Having shown how the top surface displacements are found (equation (52)) and the constraint that must 

be imposed upon them through the an iterative approach (equation (52), the specific algorithm developed 

for the present research to enforce the constraint will now be described. For an elastic spherical tup in 
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contact with an elastic half-plane Timoshenko and Goodier [15] give the relationship between contact 

radius Rc0„tocf, applied load F, tup radius R, and elastic modulus E, as, 

FFR 
Rcomacl = 1.109 3 — (53) 

v t. 

This suggests that for a given load and material, a proportionality should exist between the contact 

radius and the tup radius, i.e. 

Koma «   3VR (54) 

This idea was used to iterate the finite element solution for any given load (and damage condition) to 

obtain the contact radius. In particular, the radius of the top surface under the load was made to be the 

same (within a specified tolerance) as the tup radius by changing the estimated contact radius. The top 

surface displacement of all Gauss points within the assumed contact radius were fitted to a sphere of 

arbitrary radius by a least squares method resulting in a calculated tup radius, Rtop, (the radius that best 

fits the top surface displacements) which was in general different from the tup radius, R, which the 

simulation was intended to model. The contact radius is updated to reflect the fact that it produced the 

wrong tup radius and another iteration of the solution is performed with this new Rcontact- For iteration i, 

the estimate of the contact radius was given by, 

R 
"^contact,   ~   '*■ comactj^ ?J ~ (->->) 

\Ktop 

and the finite element solution was repeated with the new contact radius (and resulting Hertzian contact 

pressure profile). This process continued until the calculated tup radius was the same as the required tup 

radius within some small tolerance. In practice, this convergence took only 3 to 5 iterations. Both top 

surface radius, Rtop, and contact radius, Rc0„,ac, are shown as a function of contact iteration number in 

figure 12. 

When the contact solution had converged, the damage algorithm was invoked. At some point, the 

damage criteria identified a damage. When that happened, the stiffness was modified and the iteration 

continued with the contact algorithm again. The contact algorithm was iterated within the local model 

and the resulting contact radius was used in the global model. Further discussion will be subsequently 

presented to show how the contact algorithm was incorporated into the local and global finite element 

models. 
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Adaptive Mesh 

As the contact algorithm is invoked, the contact radius changes, so that with a fixed grid, the number of 

elements over which the contact load is applied may change. In particular, as the load increases, the 

contact radius does as well. A mesh that is refined enough for one contact radius may not be refined well 

enough for a different contact radius. To overcome this problem, one could make a single grid which is 

refined tightly enough in the center for the smallest contact radius anticipated and refined far enough 

away from the center for the largest contact radius anticipated, but the number of degrees of freedom for 

such a model would be large compared to that of a mesh refined for a single contact radius. The highly 

iterative nature of the solution algorithm used in this analysis demanded the number of degrees of 

freedom be as small as practical. To accomplish this, an adaptive mesh algorithm in which the plate 

dimensions, initial contact radius, and number of elements was chosen by the user, but the adaptive mesh 

algorithm set the grid spacing within the computational domain based on the current contact radius. The 

equation defining the grid spacing was designed to place the majority of the elements within 2.5 contact 

radii of the center of the plate and provide near unit element aspect ratios in that region. The equation 

defining the element x-dimension length was, 

AX: = a 
power 

Sl"i   .  I   '       i   ,  /i        \l/powers< (fj+(;-J+o-<>" 
/. (*-l) 
\    n    J 

i-l 
+ \iZl-i + (i.sf'

m^i 
power 

where, 

a = plate half width (63.5 mm) 

power -16 (56) 

4R _ _ ^'■^ contact 

a 
n = number of elements in the x - direction 

/ = 1,2,...,« 

in which the choices of s and power were made after a parameter study in which the resulting grids were 

compared graphically and subjectively judged by the author with respect to the degree of refinement near 

the contact region and the smoothness of the transition. With this choice of parameters, 

4 
A*l Ä — ^contact 

n 
and, (57) 

/=i 
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Each time the contact algorithm modified the contact radius, the adaptive mesh algorithm redefined the 

grid spacing, so that the new grid was tailored to the new contact radius. The change in the position of 

the nodes required the finite element stiffness to be recalculated. It should be observed that moving the 

nodes implied that the degrees of freedom from one contact iteration to the other were not the same. An 

implication of the modified degrees of freedom was that the displacements from one load increment to 

the next load increment may not be based on the same nodal coordinates. The nodal coordinates were 

made consistent between load increments by starting each load increment with the contact radius (hence 

nodal coordinates) found from the previous load increment. Nodal displacements could not be compared 

directly between load increments except at the corners of the model (one of which was at the center of 

the applied load), because only there were the nodal coordinates fixed. In practice, the contact radius 

change between load increments was small, and the change in the location of the nodes between load 

increments was small. 

Core Properties 

Since the primary functions of the core in a sandwich construction are to resist transverse compression 

(supporting the facesheets) and transfer shear loads. Although Nomex honeycomb core is known to 

exhibit nonlinear load deflection relations in both compression and shear before any damage,10 linear 

material properties were used in this research up to the point of core damage. A core constitutive model 

that includes a linear secant modulus for the ratio of transverse direct stress to transverse direct strain 

before core damage was used. Similarly, the ratio of maximum transverse shear stress to transverse shear 

strain in each of the in-plane directions will form the constitutive components for the 4 and 5 

components. Having no data from which to deduce Q45 or Q66, Q45 was assumed to be zero and Q^ was 

assumed to have a value of 10% of the average of Q44 and Q55. The later was done to avoid problems 

associated with a zero stiffness in in-plane shear. In particular, the Qy terms before translation are: 

Q_    Hems/,   o    _      yzw     /-\    _      sw    o    - Q44+ Qs5   n    - n /^e\ 
33 'V44 .V55 >V66 — .^?45-U (58) 

S3    u 84^ G5 20 

Damage progression 

Matrix cracking. 

Matrix cracking was assumed to be present in a particular lamina when one of the stress-based failure 

criteria was violated. The damage mode matrix cracking was handled as a constitutive change in which 

the coefficients Q12, Q22, Q23> Q<w> and Q66 were reduced by three orders of magnitude. The progression 

24 



of matrix cracking was based on load transfer within the finite element model. It is assumed that all 

forms of damage are coupled, so that matrix cracking will affect and be affected by core damage and 

delamination. Both core damage and delamination were modeled in the local FEM as was matrix 

cracking. Matrix cracking progression was not included in the global FEM. That is, the stiffness 

reduction associated with matrix cracking and as well as the load transfer leading to the continuation of 

matrix cracking was included in the local but not the global finite element model. The approach then, 

was not complicated. Within the local model, after each FEA step, in-plane stress was calculated. Three- 

dimensional equilibrium was approximately satisfied, producing transverse stresses and modified in- 

plane stresses. These stresses are used in the failure criteria to determine if matrix cracking was present 

in any particular ply at any particular Gaussian point (all integration was done at these points rather than 

the nodes). If matrix cracking was determined to exist, the constitutive relation for that ply in that 

element was modified in proportion to the number of Gaussian points that failed. That is, if one fifth of 

the Gauss points within a given element showed matrix cracking at ply k, the constitutive terms for that 

ply were reduced by one fifth. The finite element solution was repeated without changing the load. 

Within the damage algorithm, iteration continued until no additional changes to the constitutive relation 

ensued. 

Core damage. 

In the global model, core damage was handled in much the same way as matrix cracking. All the 

comments concerning the matrix damage apply directly to core damage as well. After damage, the entire 

core stiffness was effectively removed (it was necessary to leave it nonzero to avoid conditioning 

problems). In the local model, core damage was modeled by removing the elastic foundation stiffness for 

elements found to have core damage. In addition to this stiffness change, equilibrium integration for the 

local model was accomplished with zero stress at the bottom surface of the facesheet (since the core 

stiffness is zero). This was done by integrating equations (18) through the facesheet and taking the lower 

boundary condition as zero. In this way, the condition a3=a4=a5=0 is enforced for the facesheet locally 

at the interface between the core and the facesheet. This equilibrium change partially accounts for the 

fact that when the core is damaged it does not support the facesheet. That is, the motion of the facesheet 

into the space formerly occupied by the core will not induce any transverse direct or shear stress at the 

lower surface of the facesheet. The effect was a much higher bending-type load within the top facesheet 

as the transverse direct stress formerly taken by the core must be transferred by transverse shear within 

the facesheet to the surrounding supported facesheet. The intact core immediately surrounding the 

damaged core saw an increased transverse load since it acts as a fulcrum for the bending top facesheet. 
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The interaction between the tup, the top facesheet, and the core is illustrated schematically in figure 13. 

In the figure, the core is represented by springs to emphasize its role in providing vertical support for the 

top facesheet. The leftmost undamaged spring in figure 13 is seeing a greatly increased transverse load as 

described above. 

Delamination. 

The effect of delamination on the plate response was considered in the local model through a procedure 

very similar to that described above for matrix cracking. The only significant differences were that the 

failure criterion was based on the interface stresses and constitutive terms for both plies adjacent to the 

failed interface were reduced. In this way, the constitutive terms contributing to transverse shear stiffness 

were reduced, but the in-plane stiffness of the facesheet was unaffected by the simulated delamination. 

Local Model Solution Algorithm 

The algorithm developed for this research is local-global in that it incorporates a local model which is 

solved first and a global model which depends on the local model solution. The local model simulates the 

sandwich structure by modeling the top facesheet as a plate and the core as a foundation supporting the 

facesheet. The core stiffness is constant (elastic) until the core stress reaches the yield stress, taken to be 

the maximum stress attained in uniaxial compression.10 The strain at which the core first attains the yield 

stress is the yield strain. Between yield strain and failure strain, the core (secant) stiffness varies to 

maintain the core yield stress at the lower surface of the top facesheet. Thus the foundation must be 

called elastic-plastic, even though the finite element does not include plasticity. The principal feature not 

included in the local model (hence the need for a global model) is midplane displacement of the 

sandwich. The motion of the top facesheet relative to the sandwich midplane is modeled in the local 

model and the motion of the sandwich midplane is modeled in the global model (a full sandwich plate). 

Facesheet damage modes (fiber failure, matrix.cracking, and delamination) are assumed to develop in 

such a way that they can be approximated by a progressive reduction in plate stiffness through the 

constitutive relations. Core crushing is also treated as a stiffness reduction of sorts, but is included as a 

reduction in the foundation stiffness rather than a constitutive adjustment. In the global model, facesheet 

damage made such a small difference to the global stiffness in the early runs, that it was neglected for the 

later runs. The main features of the local model algorithm are presented in flowchart form in figure 14. 

For a given load increment, the solution proceeds as follows. An estimated contact radius (that of the 

previous load increment, or the user-supplied starting value for the first load increment) determines the 
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mesh and applied pressure profile. The finite element model for these boundary conditions is solved 

using a modified Newton-Raphson iterative procedure. The displacements from the finite element 

solution are used to calculate in-plane stresses and the in-plane stresses are used in the three-dimensional 

equilibrium equations to determine the transverse stresses and the transverse direct strain. The transverse 

direct strain is integrated through the thickness and added to the midplane displacements to estimate the 

top surface displacement profile. The top surface displacements within the contact region are fit to a 

sphere using a lest squares technique and the contact radius is updated based on the resulting surface 

radius. This is iterated until the tup radius and the top surface radius are in agreement. When the contact 

radius has thus converged, the core failure algorithm is invoked. The failure criteria are checked to 

determine if any new core failures are found. If so, the foundation stiffness is modified for the affected 

elements and contact algorithm is repeated. This iteration of the core failure continues until no additional 

core failures ensue. At that point, facesheet damage is checked. If new facesheet damage is found, the 

appropriate ply stiffnesses are reduced and the core failure algorithm is repeated. The facesheet damage 

algorithm is iterated until no additional facesheet damages are found. At that point, the contact, core, and 

facesheet algorithms have converged and the global model is run using the present load and contact 

radius to determine the sandwich plate midplane displacements. The load is then incremented and the 

process is begun anew. 

Global Model Solution Algorithm 

As mentioned above, the principal feature not included in the local model is displacement of the 

sandwich midplane. It is desired to compare load verses displacement curves between the analysis and 

the experiment. The displacements available from the local model are with respect to the sandwich 

midplane and thus do not include the overall bending of the sandwich under the applied load. This 

motivates the need for a global model in order to obtain the displacement of the sandwich midplane. The 

displacements predicted by the local/global analysis are the sum of the midplane displacement of the 

global model and the displacement from the local model. The global model uses the same grid, boundary 

conditions (except it does not include a foundation), contact radius, and load as the local model. Damage 

is not included in the global model, and contact is not iterated so the global model solution algorithm is 

much simpler than the local model. The global model solution algorithm is illustrated by a flowchart in 

figure 15. 
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Local/Global Interaction 

The local model determines the contact radius based on the deformations in the vicinity of the tup. 

Localized stiffness changes due to core and facesheet damage are included. The only interaction then, 

between the local model and the global model is the contact radius. For any given load step, the local 

model is satisfied first. The contact radius determined by the local model is used with the given load (and 

the assumption of Hertzian distribution) to produce the applied pressure profile for the global model. The 

global model midplane displacement is added to the local model displacement to obtain the predicted 

total displacement. 

Comparison to Experiment 

In the tests to which the finite element analysis will be compared, sandwich plate structures were loaded 

both statically and dynamically through contact with a 12.7 mm radius spherical indentor located at the 

center of the plate which moved transverse to the plane of the plate. To model this, sandwich plate plane 

stress elements are loaded with a Hertzian contact load. Two different models are actually used, a local 

model and a global model. In the local model, the top facesheet are modeled with plane stress elements 

while the balance of the plate are modeled by an elastic-plastic foundation supporting the top facesheet. 

In a second model (the global model) the entire sandwich structure (both facesheets and the core) are 

modeled using plane stress elements to obtain the gross deformations of the plate. The grids, loads, and 

edge boundary conditions for the two models were the same. The sum of the displacement of the 

midplane of the global model and the displacement of the top surface in the local model was taken to be 

the predicted displacement of the top surface of the sandwich plate. In this way, the global model 

provides the solution for the sandwich plate bending while the local facesheet bending and the contact 

between the indentor and the specimen were modeled by the plate on an elastic-plastic foundation in the 

local model. Stress and failure were evaluated from the results of the local model. Damage was modeled 

in the local model by constitutive (facesheet) and foundation (core) stiffness reductions in the elements 

in which damage was indicated by stress and strain based criteria. 

A significant difference between the analysis and the experiment must be kept in mind when interpreting 

these results, namely, the fact that the experiment was conducted using displacement "control" while the 

analysis used load control. That is, in the experiment, indentor (or impactor) displacement was the 

controlled parameter (input) while the load developed by the plate was a result (output). In the analysis, 

the load applied by the indentor was the controlled parameter, and the displacement was a result. Load 
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control in the analysis was needed in order to maintain a Hertzian contact pressure under the indentor, 

but it lead to the inability of the analysis to directly resolve load drops associated with damage. 

It should be emphasized that the grid shown in figure 16 is for the smallest contact radius observed in the 

experiment, so that the grid distortion shown in that figure (the distortion of the elements from a square 

shape) is the maximum expected from the simulations of the test data. That is, no actual test runs are 

expected to have poorer shaped elements, so if a given mesh refinement is sufficient for these test cases, 

it should be sufficient for all of the actual test runs as well. As can be seen in figure 16, the adaptive 

mesh algorithm placed the majority of the elements within 2.5 contact radii of the center of the plate, and 

bilateral symmetry was exploited. Though the adaptive mesh algorithm did maintain square elements in 

the vicinity of the applied load (where strain gradients are high), the aspect ratio of the elements far from 

the applied load is seen to be very high. Thus, even the 13x13 mesh must still be considered coarse away 

from the applied load. The problems associated with high aspect ratio elements were not observed in 

these tests. This may be due to the fact that the stress in the poorly shaped elements was nearly aligned 

with the long axis of the elements, and the strain gradients within those elements were relatively small. 

Results from the 4- and 48-ply test cases with a 1.0 mm contact radius and a unit (1.0 N) load are shown 

for the various grid sizes in figure 17. This figure shows that the center displacement of the plate 

increased with grid refinement, but appears to asymptotically approach a limit. This figure indicates that 

the finite element model was too stiff, as expected, but that the stiffness error is virtually eliminated by 

refining the mesh to a 9x9 grid. Increasing the grid size above 9x9 did not, in the opinion of the authors, 

significantly improve of the stiffness of the finite element solution. 

Test Cases 

For the 16-ply specimens, three test cases were run in order to highlight the roles of the different damage 

mechanisms. For each cae, the tup radius was 12.7 mm and the load varied in 16 equal increments from 

409.1 N to 3477.2 N. The symmetric boundary conditions were those shown in figure 7 in which a/2 took 

on the value of 63.5 mm so that the entire plate modeled was 127 mm square as was the fixture in which 

the specimens were tested experimentally[8]. The element employed had 14 degrees of freedom per node 

and is described earlier. Each case employed a local model in which the facesheet was modeled as a 

monolithic laminate on an elastic foundation, and a global model on which both facesheets and the core 

were modeled by a sandwich element. Details peculiar to each test case are described below. 
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Case 1, no damage. 

In the first case, no damage was modeled. For each step in load, the contact problem was solved 

iteratively with the local model. The core and facesheet material properties in the local model were 

constant for all loads. The contact radius (as a function of load) obtained from the local model was used 

in the global model so that the applied load distribution on the global model, for any given load, was 

determined by the local facesheet bending and core compression effects as modeled in the local model. 

This case provided a baseline to show the effects of the damage in the other two cases which included 

damage. 

Case 2, core damage only. 

In the second case, core damage was modeled, but facesheet damage was not. That is, in the local model, 

the elastic-plastic foundation stiffness was reduced under each element that showed core failure. This 

was done via the damage algorithm described. The reduction of the stiffness was constant for the entire 

element and proportional to the number of Gauss points within the element that failed due to core 

crushing. Within the local model, and for a given load increment, if the core failed, the contact algorithm 

was reiterated until a new converged contact radius was obtained. The damage algorithm was then re- 

invoked to determine if additional damages were brought about by load shedding due to the core stiffness 

reduction or by load redistribution due to the changed contact radius. This process was repeated for any 

given load step until the damage did not change further and the contact algorithm indicated that the 

portion of the top surface of the plate over which the load was applied was conformed to the known 

spherical tup radius. Contact and damage algorithms were thus nested so that for any given load 

increment the local model provided a converged damage profile and contact radius. The resulting contact 

radius (as a function of load) was the same as that of case 1 until the load at which core damage began 

(core damage initiation load) was reached. Beyond this core damage initiation load, the contact radius for 

case 2 was generally different from that of case 1. The contact radius output from the local model was 

used to load the global model with Hertzian contact loads. While the core failure algorithm was 

employed for this case, the facesheet failure algorithm was not. The material properties of the facesheets 

were constant for all loads. This case provided a means to understand the role of core damage without 

facesheet damage. 

Case 3, facesheet and core damage. 

In the third case, core and facesheet damages (fiber failure, delamination, matrix cracking, and core 

crushing) were all modeled together. Within the local model, facesheet damages were allowed in the top 

facesheet only. This restriction was considered due to the fact that damage was not found in the bottom 
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facesheet in the experimental effort. No damages were modeled in the global model. The third case 

shows the ability of the algorithms developed for this research to model the damage of a composite 

sandwich structure by transverse Hertzian contact-type loads simulating low-velocity impact. 

Metrics for Success of the Analysis 

The analysis and the experimental data must be compared in some meaningful way to determine how 

well the analysis did at predicting the experimental results. The particular measures chosen as the basis 

for comparison between experimental and analytical results are, contact radius as a function of load, the 

load verses displacement curves, and delamination patterns. The metrics are here described. 

Contact radius. 

The first metric is contact radius as a function of load. This metric should indicate how well the contact 

algorithm in the analysis models the actual event. The experimental data available for contact radius 

were not measured directly. Separate tests were conducted in which a pressure sensitive paper was 

placed between the indentor and the specimen. After loading to the prescribed load, the pattern left on 

the paper was an impression of the "footprint" of the indentor for that load. The widest portion of the 

footprint was measured with a ruler and taken to be twice the contact radius for that load. The edges of 

the footprint were not well defined, so the measurements were rather subjective. For this reason, the 

experimental contact radii should be considered rough estimates. The experimental error was not 

determined. 

Load verses displacement curve. 

The static indentation load verses displacement curves provide a stiffness check of the finite element 

algorithm as well as a check of the load at which core failure begins. The load drops seen in the 

experiment were not observed in the analysis because the analysis, being load controlled, did not permit 

load reduction. 

Delamination pattern. 

The C-scans from the experiments[8] can be compared to the delamination patterns predicted by the 

analysis. Though the analysis determined the delamination pattern at each interface, the C-scans provide 

only a single pattern for the whole facesheet. The through the thickness variation of the delamination 

pattern was provided by Harrington's photomicrographs [5]. 
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Analysis Results 

Contact radius. 

In the analysis, the inclusion of facesheet damage in the form of reduced constitutive terms in the 

damaged elements has very little effect on the contact radius. This can be seen in figure 18, in which 

facesheet damage was present for all loads above 1300 N. 

From the   experimental data shown in Figure 18, the contact radius in the experiment is very much 

effected by the presence of localized damage which occurred at 2250 N. The load of 2250 N is the load 

associated with the first major load drop in the static testing of the 16-ply specimens. The localized 

damage associated with this load in the experiment was to both the core and the facesheet. Even with the 

inclusion of both of these damage types, the analysis does not show the experimentally observed jump in 

the contact radius. The failure of the analysis to predict the jump in contact radius indicates a limitation 

of this research. The three-dimensional effects of the damage as they "soften" the contact between the 

tup and the specimen are evidently not well modeled by the algorithm. This is believed to be due to the 

fact that the algorithm reduces the stiffness of the facesheet in the area of damage, but still models the 

damaged facesheet as a single element through the thickness. A single element with continuous kinematic 

relations through the thickness is not able to model the reduction in local bending stiffness which must be 

present when delaminations exist. Locally, delaminations change a single, relatively thick laminate into 

multiple, kinematically independent, comparatively thin, sublaminates. The local bending stiffness 

provided by the sum of all of the sublaminate contributions is much less than the local bending stiffness 

of the single laminate. The facesheet damage algorithm used in this research reduced the shear stiffnesses 

of the plies adjacent to the delamination, but did not allow the sublaminates to move independently. A 

thick laminate with reduced shear stiffnesses is still stiffer in bending than would be the sum of the 

component sublaminates. The effect of maintaining the single-plate kinematics in the presence of 

delaminations is that the stiffness reduction in the damage algorithm does not adequately reduce the local 

bending stiffness of the facesheet. Since the local bending stiffness of the facesheet is too high, the 

midplane curvature under the load is too low. The top surface displacement is calculated from the sum of 

the midplane displacement and the through the thickness integral of the transverse direct strain. The low 

curvature of the midplane thus produces a low curvature of the top surface. The contact algorithm uses 

the curvature of the top surface to determine what the next estimate of the contact radius should be. In 

effect, the contact algorithm forces the top surface curvature to conform to the curvature of the tup. If the 

midplane curvature is low, the contact radius will be artificially small. Thus, the facesheet damage 

algorithm is believed to be responsible for the inability of the analytical algorithm to model the contact 
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radius jump observed in the experiments. Modeling the delaminated facesheet with multiple independent 

elements stacked through the thickness may sufficiently model the local bending stiffness loss associated 

with delamination to allow the contact radius jump to be predicted, but was considered to be beyond the 

scope of this research. Another approach that may be able to improve the modeling would be to include 

delamination capable kinematics. It should be observed, however, that the present analysis model allow 

only a single delamination, whereas the experiments, elasticity solution, and finite element solution all 

show multiple delaminations. Extension of the delamination capable kinematics to multiple 

delaminations is considered beyond the scope of this paper. Another simplification in the analysis 

contributing to the contact radius error is the fact that the contact algorithm is only used in the local 

model. Thus, sandwich midplane curvature can not effect the contact radius. The authors believes this 

error to be small, but nothing was done to quantify it. 

Load verses displacement. 

As for the contact radius, the inclusion of facesheet damage as modeled with reduced constitutive terms 

in the damaged elements has very little effect on the local stiffness as shown in the load verses 

displacement curves in figure 18. In that figure, the curves representing load verses displacement 

including only core damage and that including both core and facesheet damage are so close as to be 

indistinguishable. It should be noted that facesheet damage was present for all loads above 1300 N. 

As seen in the experimental data shown in figure 19[8], it can be observed that the load verses 

displacement curve is very much effected by the occurrence of localized damage which occurred at 2000 

N. The load of 2000 N is the load associated with the first major load drop in the static testing of the 16- 

ply specimens. The localized damage associated with this load in the experiment was to both the core and 

the facesheet. Since load control was used in the analysis, it was not possible to predict the load drop 

associated with damage. To account for this, the load at which the failure occured is held constant and 

with the reduced stiffness parameters (caused by the failure), another equilibrium state is determined. 

That is at the same load level, there are two equilibrium configurations, one corresponding to the 

configuration without failure and the other correspond to the equilbrium configuration with failure. This 

resulted in a horizontal jump in the load deflection curve as seen in Figure 19. It should be noted that if a 

displacement control algorithm is used, the same failure would have resulted in two different load levels 

for the same displacement configuration. That procedure would have resulted in a vertical jump in the 

load deflecion curve. Since the experiment conducted is a displacement cntrol configuation, such a jump 

can be seen in the experimental load deflection curve shown in Figure 19. The dotted line in Figure 19 

indicate the interpolated load displacement curve if the displacement control algorithm was used instead 

of load control. That is under load control at 2000 N, the displacement jumps from 0.7 mm to just over 
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0.8 mm If a displacement control algorithm is used, at 0.7 mm displacement, the load would have 

dropped to 1800 N before increasing again to 2000 N at a displacement of 0.8 mm. With this 

interpolation, a very close agreement can be seen between both the analytical and experimental load 

deflection curves. The load associated with the beginning of this new equilibrium curve is the load at 

which core damage begins. The progress of core damage under a given (constant) load is illustrated in 

figure 20. 

When core damage is present in some localized area of the sandwich, the only resistance to motion of the 

top surface toward the midplane (or vice versa in the static experiment) within the damaged area is the 

local bending stiffness of the top facesheet. In the experiment core damage leads to large movement of 

midplane of the specimen toward the top surface due to the flexibility of the delaminated facesheet. This 

flexibility also is thought to lead to rotation of the facesheet at the edge of the core damage region, so 

that the entire transverse load is reacted by a relatively thin ring of the core surrounding the damaged 

core. This situation is illustrated as the "initial position" in figure 20. The innermost portion of this thin 

ring of core experiences high stresses (ultimate) and core failure continues, expanding the ring. The 

expanded ring, having more area due to a greater radius, reacts to the transverse load with a lower 

average stress. This situation is illustrated as the "intermediate position" in figure 20. When the stress in 

the undamaged core at the edge of the damage is above (less negative than) the compressive ultimate 

stress of the core, the core failure is halted ("final position" in figure 20). 

Delamination patterns. 

Delamination can significantly reduce the residual compressive strength of a composite. It is therefore 

important to determine the delaminations produced by a given impact event. For this reason, 

delamination patterns were chosen as a metric to judge the analysis. The delaminations predicted by the 

finite element analysis can be compared with the C-scans shown in figure 21 [8]. The physical dimensions 

are not given in figure 21, but the scans are magnified by 150% so that the maximum width of the 16-ply 

static case is 12 mm. Figure 22 shows the delamination patterns produced by the analysis for the same 

load. The shapes of the delaminations predicted by the analysis appear to be very good, while the size of 

the delaminations are too small by a factor of 2.0. The patterns shown in figure 22 are surprisingly close 

to those seen in the C-scan in figure 21 when one considers that the analysis based delamination on stress 

alone and did not include a singularity (crack tip) or even a physical discontinuity as was present in the 

experiment. 
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Conclusions 

The analysis shows the ability to model some of the important features of static indentation of 

composite sandwich structures. In particular, the slope of the load displacement curve (stiffness), 

including contact, before damage is well represented. Perhaps the most important feature, core failure 

load, is predicted by the analysis within ten percent of the experimental value. Damage progression is 

under predicted by the analysis. This is believed to be attributable to the facesheet damage algorithm 

which evidently does not adequately reduce the local bending stiffness of the top facesheet when 

delamination occurs. Delamination patterns predicted by the analysis bear a striking resemblance to the 

C-scans from the experiments, but are smaller in size. A more accurate model for the local bending 

stiffness in the delaminated region should produce better damage progression results. Possible ways to do 

this without resorting to a full three-dimensional finite element model are by modeling the delaminated 

facesheet as a stack of independent sublaminates, or, including delamination capable kinematics. 
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Here Oi,02,03 are the normal stress components, o4,o5,06 are the shear stress components, 

XT,YT,ZT,XC,YC,ZC are the lamina normal strengths in tension and compress ion along 1,2,3 

directions, R,S,T are the shear strengths in the 23,13 and 12 planes. 
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Fig. 5 Pascal's triangle showing interpolation polynomials for 3rd and 5* order shape functions. Note, polynomials are 
complete to 3rd and 5* order, respectively. 
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Fig. 13 Schematic of core failure 
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ANALYTICAL MODELLING OF SANDWICH-PLATE 
DYNAMICS UNDER LOW-VELOCITY IMPACT 

Introduction 

The dynamics of a homogeneous and isotropic elastic plate due to low velocity impact 
has been examined for many years. Expermental evidence seems to support the theory rea- 
sonably well. On the other hand, nonhomogeneous anisotropic materials, such as composite 
sandwich-plates are not as easily modelled. Here we analyze the sandwich-plate dynamics 
under low velocity impact by considering the global behavior under a dynamic load distri- 
bution while incorporating the local effects of the impacting object (figure 1). A tractable 
model for the global sandwich-plate will depend on impact energy and stiffness of the upper 
face plate. Observations of experimental data suggest that the loading dynamics should be 
modelled by a power law (non-Hertzian) which depends on the ply lay-up and thickness58. 
In this paper we summarize some analysis of a sandwich-plate model with a general power 
law for impact pressure. 

The Sandwich-Plate 

The sandwich-plate consists of two orthotropic composite face sheets of constant thick- 
ness hj separated by a core material of constant thickness hc (figure 2). The core material 
functions to stabilize the face sheets and is assumed to be of low density. Following the 
development of Whitney10, these assumptions are made. 

1. The core material is transversely isotropic and is much thicker than the face sheets 
(hf < Ar). 

2. The inplane stresses of the core, <rx,ay and aiy. are negligible while the inplane core 
displacements are assumed to be linear in the transverse coordinate (z). 

3. In the face sheets, the inplane displacements are uniform through the thickness of the 
face sheets and transverse shear stresses <TXZ and ayz are negligible. 

4. The sandwich-plate's transverse displacement is small compared to the thickness. 

5. The inplane strains are small compared to unity. 

6. The transverse displacement is independent of the transverse coordinate, that is. e, is 
negligible. 

7. The core and each ply of the face sheet obeys Hooke's law. 

Under these assumptions, a simply supported rectangular sandwich-plate with a dynamic 
load distribution P(x.y.t) is modelled by a system of partial differential equations given by 



Whitney in reference 10. This set of equations along with its boundary conditions is reduced, 
using a modal expansion. 

w(x,y.t)=   Yl   ^mn(t)sin(mTTx/a)sm(mry/b) (1) 
m.nzzl 

and forms the uncoupled ordinary differential equations of the form 

pAWm,n(t) + Qm.JVm.n(t) = Pm,n{t)  with Wm,n(0) = \Ym,n(0) = 0. (2) 

Here pA is the density times the plate area, pm.n{t) is found from the Fourier sine series of the 
load P(x,y,t)< and Qm.n is a stiffness coefficient which accounts for the material properties, 
geometry and boundary conditions. 

As the thickness of the face sheets increases, assumptions 1, 3 and 6 may no longer 
apply. A new model consisting of the top face sheet on an elastic foundation was considered. 
This model resulted in a similar set of equations as Whitney9 with an additional term to 
account for the stiffness associated with the elastic foundation. Again the equations are 
reduced using modal expansions and produce the same equation as 2 above however, now 
the stiffness coefficient is changed. This equation has the well known solution 

Wm.n(0  =      / /    Pm.n{T) Sm \/—^(^ ~ ~M7 

y/pAQm.nJ° V    PA 
(3) 

It can be shown that if P(x. y. t) is bounded then the solution for each mode is bounded by 
a constant which vanishes as the mode numbers increase. We therefore only consider the 
first mode. 

The Load Distribution 

Historically the load distribution for the impact of a perfectly elastic spherical object on 
an infinite half space satisfies the Hertzian contact law11. that is, the pressure is proportional 
to the impact penetration depth raised to the 1.5 power. This contact law and a modified 
form proposed by Yang and Sun has been used for loading composite plates of finite thickness 
by many authors1'2,3"4,6"12. Recently, some authors have suggest an alternate power law may 
be more appropriate. Liou5 examined load vs indentation data for various laminations and 
thicknesses and found that a power of less than 1.5 better fit the data. Kim and Goo7'8 used 
a penalty finite element method to analyze a two dimensional contact dynamics problem and 
concluded the Hertz law consistantly underestimated the contact force. 

In our work, we examine a general contact power law 

P = ka\ (4) 

Using the statically determined load vs indentation data and a nonlinear least squares fit, 
the constants k and v were estimated for a 4. 16, and 48 ply sandwich-plate. The results 
can be seen in Table 1 as well as figure 3.4, and 5. 



Table 1: Proportionality constant and power for various ply 

Ply k V 

4 

16 
48 

2046 

5342 

15250 

1.052 

1.136 

1.290 

Notice as the number of plys decreases the thickness of the face sheet decreases and the 
value of v approaches one. Further, as the thickness of the face sheet increases, v could be 
expected to approach 1.5, the Hertzian law. This is of course a conjecture, and can only be 
supported by more careful experiments and analysis. A comment about units is approprate 
at this point. Since P has units of pressure and a has units of length, it stands to reason 
that if v changes with thickness then k must necessarily change as a function of thickness. 
With this general power law for determining the load distibution, we can describe the dy- 
namics of the impactor. 

Indentation equations 

Following the development of Greszczuk13, the impactor displacement, wj(t), is related 
to the indentation depth, a, and the plate displacement, wp(x0,y0,t) by wi(t) = a(t) + 
wp(xo, yo,t)- Because the impactor produces the loading pressure, its dynamics are given by 
mjwj = —P. Combining these two equations and using equation 4 produces the governing 
equation for indentation depth as 

mjä + kau = — m/tiy (5) 

Further, if the plate is at rest upon inital impact and impact energy. E0y is known, then the 

velocity of the impactor is found to be i>0 = \/2Eo/m[. This leads to initial conditions 

Q(0) =0  and d(0) = v0. (6) 

Coupling equations 5 and 6 with equation 2, where wp is the first mode and the pressure is 
governed according to equation 4, produces 

pAwp{t) + Qwp(t) = lea"  with u>(0) = wp(0) = 0. (7) 

Under the assumption of no plate movement, equation 5 is implicitly solvable in terms of 
incomplete Beta functions. B[::a.b] i.e 

t = 
q{a), 0<t<tm 

2tm - q{a),    tm<t<2tri 
(8) 



where 

with 

q(a) 
v0(v^lY 

■B 
a 

OLr, 

1/+1 1 1 
i/ + l  2 

G-r —-—£0 and im = —Ap,  i    ,  iV 
k        J i'o        1ll7+T "•" 2^ 

(9) 

(10) 

Here Q^ is the maximum indentation depth and tm is the time at which this depth is achieved. 
An approximate inversion of equation 8 is given by 

.     irt 
alt) omsin 

2tr 

which becomes exact when v = 1. Since this solution is for no plate movement, all of 
the impact energy goes into indentation. Thus am is an upper bound on the solution for 
a{t) with plate movement. Additionally, we expect the plate movement to be small, by 
assumption 4 above. Thus am becomes a natural length scale and tm a natural time scale 
for the coupled equations. Introducing dimensionless variables r = t/2tm, ß(r) — a(t)/am 

and V(T) = wp(t)s/am along with dimensionless mass ratio m = mi/pA and dimensionless 
stiffness ratio s = Q/ka^~l, equations 2, 5 and 6 are reduced to 

.5 + 2(1 +m)3" =2mv,   3{Q) = 0,   ,0(0) = 2, (11) 

v + 2msv = 2ms 3\   r(0) = 0.   ü(0) = 0. (12) 

At this point it is possible to make a few qualitative observations. First we observe that 
the mass ratio m is simply the ratio of the impactor mass to the plate mass. However, 
the stiffness ratio 5 is a ratio of Q. which captures material properties as well as geometry 
and boundary conditions for the plate, to ka^1. From the definition of am, this term is 
characterized by the impact energy. E0, as well as k and v. Thus, increasing the impact 
energy will necessarily decrease the stiffness ratio. From equation 12, we see the natural 
frequency of the plate is u> = \/2ms. Thus, if the impact energy is doubled, the stiffness 

ratio, s. is decreased by a factor of 2^. This leads to a decrease in the oscillation frequency 
of the plate. In this dimensionless form, the duration of impact. T, is scaled to one as 
5 —> oc. From some parameter studies with u = 1.5. the impact duration appears to have 
the asymptotic behavior T ~ 1 + c/s for some constant c and is relatively insensitive to 
changes in mass ratio m. The number of oscillations during the impact duration can now 
be approximated by *JJT/2X. These oscillations can be seen in the load-time plot of the 
data (figure 6) for a 16 ply sandwich-plate. Returning to equation 12 we observe that if 
the product ms is large the acceleration term. v. will be dominated by the last two terms. 
This leads to an approximation that V(T) ^ 3"(T). With this approximation, equation 11 
is reduced to the homogeneous problem which has the solution given in equations 8 and 9 
for dimensioned variables. Figures 7 and 8 illustrate the results of a numerical solution to 
equations 11 and 12 where the stiffness ratio s = 10. the mass ratio m = 39.6 and v = 1.5. 
Figure 7 is a plot of dimensionless indentation depth. 3, versus dimensionless time, r. The 



plot has a near smooth half-sinusoid behavior as expected in the approximation. Figure 8 is a 
plot of dimensionless plate displacement scaled by s, wp/am, versus dimensionless time. We 
see the peak displacement is approximately 1/s of the indentation depth and the plot is close 
to a /i3/2 with the addition of a few ripples. These ripples are due to lower order behaviors 
which correct for the acceleration term, v, in equation 12. Figures 9 and 10 are similar to 7 
and 8 except now the stiffness ratio is reduced to one. In Figure 9 we see greater deviation 
from the near half-sinusoid as the plate movement becomes more pronounced as it is now on 
the same order as the indentation depth. Figure 10 show that the plate displacement is on 

the order of the indentation depth. 

Summary 

We have taken a brief look at a sandwich-plate model and shown through modal ex- 
pansion the differential equations can be reduced to a simple harmonic oscillator given by 
equation 2. Exploring measured data, we found the impact pressure might be better de- 
scribed by a general power law as apposed to the Hertzian contact model. Using this general 
power law we were able to examine some general features of the plate dynamics under low 

velocity impact. 
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FINITE ELEMENT ANALYSIS OF SANDWICH COMPOSITE PLATES UNDER LOW-VELOCITY 
IMPACT 

Introduction 

The goal of this work was to study stress distribution in sandwich composite plates, with pins as a core, under 
low velocity impact, and predict their possible modes of failure. For this purpose, 6 models were constructed 
and solutions obtained using I-DEAS as preprocessor, postprocessor and for analysis and NASTRAN for 
analysis. The models (described in detail below) were: a two-dimensional local model, a three-dimensional 
global model with rod (truss) and plate elements, a three-dimensional global model with beam and plate 
elements, a three-dimensional global model with brick elements, and a three-dimensional local model with 
brick elements. In the two-dimensional model and the three-dimensional models with plate elements in the 
face sheets the purpose was to study face sheet stresses and forces in the pins, making up the core. The face 
sheets were considered homogeneous, values of the elastic constants were taken as effective values, 
corresponding to the given ply properties, number of plies and fiber orientations (calculations of effective 
constants are shown below). In the three-dimensional local model with brick elements, the purpose was to 
study stress distribution through the thickness of the face sheets. Each face sheet ply was represented with a 
layer of elements with its own (in the global coordinate system) elastic constants, depending on the fiber 
orientation. Calculations of the constants are shown in the description of the model. 

Calculation of effective elastic constants   F   ,£   ,v     ,G      of graphite-epoxy face sheets with 

r0/90/+45/-45/0/90/+45/-45/0/901s lay-up and thickness t=0.085 in neeed for the NASTRAN run. (These 
are values in the global coordinate system) 

Elastic properties of a ply: 
Ex = 20 x 106 psi,E2 = 2.1 x 106 psi,vl2 = 0.21,G12 = 0.95 x 106 psi ■ (1) 

Stiffness coefficients of a ply in the principal material coordinate system (figure 1) are: 

fin =  ^H- = 0.2009 x 108 psi '  ß« = —7^= 0.21 lOx lOV*'' 

E, 

Ö12 = v12ß22 = 0.4431 xlO6/?*/ , Q66 = GI2 = 0.95 x 106 psi ■ (2) 

Stiffness coefficients of plies in the global coordinate system (figure 1), the axes of which coincide with the 
sides of the face sheets, were calculated by the formulas: 

~07x = Ö,, cos4 0 + 2(ß12 + 2ß66)sin2 0cos2 0 + ß22 sin40 , 

On = (Ön + Ö22 " 4ß66)sin2 0cos2 0 + ß12(sin4 0 + cos4 0) 

622 = ßu sin4 0 + 2(ß12 + 2ß66)sin2 0 cos2 0 + Q22 cos4 0 , 

Ö66 = (ön + Ö22 ~ 2ß12 - 2ß66)sin20cos20 + ß66 sin4 0 cos4 0 (3) 

For plv 6 = 90° 

Ön =ß22 = 0.2110 x 107 psi,Q22 = Qu = 0.2009 x 10* psi.. 



ß12 =Qi2=0M3lxl06psi,Q66= Q66 =0.95xl06 psi. (4) 

For plies 6 = 45° and 6 = -45° 

On =Ö 22   = 0.6723 x 107 /?*/, ßI2 =0.4 8 23 x 107 psi , Q 66 =0.5 3 29 x 107 psi ■     (5) 

Laminate stiffness coefficients A... are 

k=\ 

where n = 20 is the number of plies, h = — is thickness of each ply of a face sheet, £ = 0.085m is 
n 

thickness of a face sheet. So, 
t     0.085 1-3 

Äs2össir=425xl(rih' (7) 

Atj = 2/i[3ß~(0°)+ 3ß7(90°) + 2ß7(45°) + 2ö7(-450)] , (8) 

An = A22 = 7.9468 x 105 —. A.2 = 1.8658 x 105 — • A66 = 2.2964 x 105— •      (9) 
in in in 

Effective elastic constants are 

E = AAi-A\ = 88339x 106   • 
tA11 

E    =  A»^22-A22   = g 8339 x 106        • f        ■ (10) 

tAll 

A A 
G„= — = 2.7016 x 106p« , v„ = "T

2
- = 0.2348 . 

^      f ^    '    *»     A2 ■2 

Assuming that the material of the face sheets is transversely isotropic in the plane y-z and , in addition, 

assuming V vr = V _, ,we find yz xy 

E z  =  E y  = 8.8339xl0>ii  - 

Gxz = Gxy =2J0\6xl06 psi, vn =v^=v^= 0.2348 , (11) 
E 

GV7 = 
y-— = 3577 x 106 psi. >z    2(l + vyz) 

Two-dimensional Model (for representing pin response) 

This is a local model (figure 2), the purpose of which is to estimate the bending moment in pins under the 
effect of a force applied to a face sheet, and thus to decide what load to apply to the pin in subsequent local 
three-dimensional analysis, what elements will best represent pins in a global three dimensional model, and to 
see if bending of the pins plays a substantial role in their failure. Face sheets were modeled with plane strain 
elements, pins were modeled with plane stress elements. The model is simply supported in the lower and 



upper corners. The face sheets are taken to be homogeneous with the effective elastic properties calculated 
above. Pins are made of titanium with the following properties: 

Epins = 16.82 x 106 psi ,Vpins = 0.32 . Gpins =    f"»     =63712x10*psi. (12) 
AI + vpi„s) 

Elastic properties of the material of the face sheets (calculated in the previous part) are 
E rack»» = 8.8339 x 106 psi ,V facesheets = 0.2348. (13) 

Ratio of area of horizontal section of a pin to area of region 1 in figure 3, which represents the plan view of 
the typical area of a face sheet is 

n x (0.023)2 

A^ = 4X0.35X0.023 = 51612X1°   ■ <14) 

Material properties of the parts of the pins inserted into the face sheets (region 1 in figure 2), are taken to be 
the average of the properties of the pin and the face sheet. In averaging account is taken of the area fraction 
Apins of Pins' horizontal sections in the plan view of the face sheets (figure 3), that was done by using the 

rule of mixtures: 

E = EpinsApins + Efaceshee,s(l ~ \ins ) = 9.246 X 10*psi , (15) 

v = vpinsApins+vfacesheets(l-Apins) = 0.2392   , (16) 

■     G = 27if^ = 3-731Xl°6^'- (17) 

Using the results from the FE analysis, bending moment acting on the horizontal sections of the pin at the 
interface with the lower face sheet is calculated to be 2.5 x 1 0 ~4 lb x in ; at the interface with the upper 
face sheet is 1.9 x 10"3/* x /„ ; in the middle of the pin is -1.2 x 1(T3 lb x in . Since these values are 
small, we conclude, that in the three-dimensional model bending of the pins can be neglected, and they can be 
modeled with truss elements. The fact that the bending moments, transmitted from the face sheets to the pins, 
are small, are also apparent from the color plot of stress G ^ distribution at a joint of pin and face sheei 

(figures 4 and 5) - the variation of this stress along the thickness of the pin is very small. 

Three-dimensional Models 

1) Face sheets modeled with plate elements, pins modeled with truss elements (figure 6) 
The purpose of this model, shown in figure 6, is to find the forces in the pins, under a load applied to the 
sandwich plate, to find out which pins undergo compression and tension in a test specimen; to define the 
force, under which buckling of the pins begins, and the distribution of stresses in the face sheets (in the planes 
of the face sheets, but not across the thickness of the face sheets). Material properties were taken to be the 
same as m the two-dimensional model, i.e. material of the face sheets is taken to be homogeneous with 
effective (average) elastic constants. The model corresponds to the actual testing conditions reported by the 
Foster-Miller company: the specimen is 8 inches long and 3 inches wide, tested with a three point bend fixture 
(figure 6). Figure 7 shows one quarter of the specimen with symmetry boundary conditions. The external 
force, applied to the specimen, was taken to be 700 lb, and this force is distributed over the area of 3m2 So 
the distributed load per unit area is -3333psi. The element size was chosen by doing convergence studies. 
Figure 8, generated by the IDEAS, demonstrates absolute values of axial forces in the pins. The directions of 



these forces (tensile or compressive) were obtained by running analysis in NASTRAN and making use of 
IDEAS postprocessing capabilities. 

Distribution of stresses (7^,(7    ,(J^ is shown in figures 9,10 and 11. We see that the highest bending 

stresses ((7 ^, G ) occur, as it was expected, in the center of the plate, where the curvature of the plate is 

the largest, and along the line, where the plate rests on the block (where the nodal restraints are imposed). The 

highest compressive stresses in the direction perpendicular to the plate (negative values of the stress (7^) 

occur at the points, where the pins enter the face sheets. The highest tensile stresses in the direction 

perpendicular to the plate (positive values of the stress (7^) occur along the lines which connect these points. 

Table 1 shows the maximum values of stresses, obtained from this model. From this table we see, in 

particular, that the maximum values of stresses  (7xz  and  (7      are correspondingly  1.608 x\0~3 psi 

and 6.465 x 10   psi. These values are very small, and therefore we conclude that delamination of the face 
sheets due to global bending of the sandwich plate can not happen. Delamination due to stress concentration 
near connections of the pins and the face sheets can not be captured by this model and will be discussed later. 

2) Face sheets modeled with plate elements, pins modeled with beam elements. 

This model is identical to the previous one in all respects with the exception that the pins are modeled with 
beam elements (each pin is modeled with one beam element). This model was run to check the validity of the 
conclusion made from the two-dimensional model, that bending of pins is small and truss (rod) elements can 
be used for pins in the three dimensional model. In the following table, some of the results obtained from the 
3-D truss and beam models are compared. 

truss elements beam elements 
maximum displacement in z-direction (in) 5.413 xlO"4 5.34 xlO-4 

maximum energy in pins (lb X in) 1.43 lxlO-3 1.428 xlO-3 

maximum forces in pins (lb) 5.32 5.3 

We see that changing truss elements with beam elements does not alter results significantly. The slight 
difference in the results was attributed to the presence of very little rotation and moment at the ends of the 
beams. Effects of these moments and rotations on the critical buckling load is determined using a Modified 
Euler equationfl]. If M is the moment and ß is the rotation at both the ends of the pins, two parameters a,A 
can be defined as a =M/ß ; A=EI/a 1. Then the critical buckling load can be written as Fc= [(A+0.4)/(A+0.2)]2 

n2EVl2. Using the data from the analysis, the critical buckling load can be modified as Fc=1.2 n2 El/12. For 
the given geometry of the pin, the critical buckling load can be determined as 

„     ^K2EI    ,K2Eizr*     tn 
F. = 1.2—T- = 12—= = 1.2- 

16.82X106     7r3X0.014 

V V    4 (O5/cos(30°)r 
: 4.69/6 (18) 

However, when a load of 100 lb is applied, it can seen that the maximum compressive force in the pins is 4.69 
lb, and the maximum tensile force is 5.32 lb. 
So, failure of the plate due to buckling of the pins begins at an applied force equal to 100 lb. 



3) Global 3-dimensional model with brick elements. 

The model represents one fourth of the 3-point bending test specimen with symmetry boundary conditions 
(figure 12) and has the same dimensions as the 3-dimensional model with the plate and truss elements. In this 
model, eight noded three dimensional brick elements are used. Material of the face sheets is taken to be 
homogeneous with effective elastic properties. The purpose of this model was to obtain an approximate stress 
distribution in the test specimen and to make a judgment about possible boundary conditions for a local, more 
refined model. To achieve sufficiently accurate results the number of elements in this model was set equal to 
atleast the number of elements in the 3-dimensional model with the plate and truss elements. But in fact this 
number was taken even larger because the pins in this model were represented by the three-dimensional 
elements (unlike the two previous models, where the pins were represented by the one-dimensional truss or 
beam elements). The diagrams of stress distribution are shown in figures 13, 14, 15, 16, the diagram of strain 
energy - in figure 17. We see that 
I) maximum stresses in face sheets occur in the same places as in 3D-model #1; 
II) the same pins are under tensile and compressive forces in both models; 
EH) maximum tensile, compressive forces and strain energies occur in the same pins in both models. 
Thus, we conclude that the results obtained from this model are approximately identical to the results of the 3- 
D model #1 (though numerical values of stresses from the two models are not exactly equal), and therefore the 
global model with brick elements can be used for approximate estimation of displacements on boundaries of 
small volumes surrounding the pins. This information can be used for deciding on boundary conditions for the 
next, local three-dimensional model for studying stress distribution in a small volume of face sheet around a 
pin. 

4) Local three-dimensional model with brick elements and with elastic properties of each ply depending 
on fiber orientation 

The purpose of this model is to study the stress distribution in a small volume of the face sheet surrounding 
the pin. The model represents one pin penetrating into the face sheet (figure 18). The block of material of the 
face sheet surrounding the pin was taken to be symmetric with dimensions such that the distances from the 
axis of the pin to the edges of the block are equal to the half of the smallest distances between the pins. 
In the previous models it was shown that the bending moments in the pins of the sandwich plate, under effect 
of a force applied in the center of the plate, are negligibly small. Therefore in the present model the pin was 
loaded only by the axial force but not by the bending moment. 
Displacement boundary conditions (figure 18) were chosen by considering displacements of the boundary 

points of the same block of material singled out (in postprocessing) from the global 3-D model with the brick 
elements. Boundary conditions in figure 18 correspond to the case, when the load, applied to the pin, is the 
buckling load. 
Each ply of the face sheet has one element in its thickness, so, in total, there are twenty elements in the 
thickness of the face sheet. 
Each ply of the face sheet in the model was given its own elastic constants in the global coordinate system, 
depending on orientation of the fibers in the ply. The elastic constants of graphite-epoxy plies in the material 
coordinate system are: 

Ex = 20 x 106 psi, E2 = E3= 2.1 x 106 psi, Gn = G13 = 0.95 x 106 psi, 
(19) 

G23 = 0.7 x 105 psi, vI2 = vI3 = 0.21, v23 = 0.49 



The compliance matrix of a ply in the material coordinate system is 

[S]= 

l/£, -vJEx     - vuIEx     o 0 0 

-vnIEx l/E2 v23 / E2    o 0 0 

-vnIEx -v23/£2     i/£3          o 0 0 
0 0                     0 1/G23 0 0 
0 0                     0 0 1/G.3 0 
0 0                     0 0 0 1/G12 

5xl0~8 -1.5 xi(r8 -1.5 xlO"8 0 0 0              — 

-1.5 xl(T8 47.6 xl(T8 -23.3X10"8 0 0 0 

-1.5xl0~8 -23.3X10"8 
47.6 xlO"8 0 0 0 

0 0 0 1428.6 xKT8 0 0 
0 0 0 0 105.3xl(T8 0 
0 0 0 0 0 105.3 xlO"8 

The compliance matrix of a ply in the coordinate system, the axes of which are aligned with the sides of the 
face sheets, is 

[S'] = [Te][S][Tar\ (21) 

where [Ta] is matrix of coefficients in transformation formula for stresses, {a ' } = [T   ] {a 

matrix of coefficients in transformation formula for engineering strains, {£'} = [T ]{£}• 

[T0] = 

Te]is 

m1 n2 0 0 0 2mn 

n2 m2 0 0 0 -2mn 
0 0 1 0 0 0 
0 0 0 m -n 0 
0 0 0 n m 0 
-mn mn 0 0 0 2          2 m -n 



LT£) = 
m2 n2 

n2 m2 

0 0 
0 0 
0 0 
-2mn 2mn 

0 0 0 mn 

0 0 0 -mn 

1 0 0 0 
0 m -n 0 
0 n m 0 
0 0 0 m2 -n 

where YYl — COS OC , tl = Sin CC , CC is angle of fiber orientation in a ply. The stiffness matrix [C] is the 

inverse of the compliance matrix [£']. 

To choose the size (and therefore the number) of elements which can correctly represent the stress field, the 
two following models were developed: 
1) A local three-dimensional brick element model was used to represent homogeneous isotropic face sheet 

(3-D model #5). 

2) An analytical model of shear stress distribution along the joint of the pin and the isotropic homogeneous 
face sheet. The number of elements in the 3-D FE model #5 was chosen to achieve closeness of values of the 
interfacial shear stress obtained from this model and the analytical model. After that was accomplished, the 
same number of elements were used in the local 3-D model with brick elements and laminated face sheets (3- 
D model #4). 
The stresses, obtained from this model, will be discussed later, after the description of the analytical model. 

Analytical Model of Interfacial Shear Stress Distribution 

The purpose of the analytical model is to determine shear stress distribution at an interface of a pin and a face 
sheet, considering the face sheets to be isotropic and homogeneous, and to compare this stress with the shear 
stress obtained from the 3-D model #5. The comparison will show us if the number of elements in the 3-D 
model #5 (and therefore in the 3-D model #4) is sufficient for accurate evaluation of the stresses. 
Let F be the external force acting on the pin in the axial direction (it can be either tensile or compressive), t is 

interfacial shear force per unit length, T     is interfacial shear force per unit area (T = i_ , dimension a is 
a 

shown in fig. 19). The pin and the material of the face sheet are connected with adhesive with a shear modulus 
G (figure 20). Thickness of layer of the adhesive is denoted by T\ . Let us introduce subscripts 1, r, f and b 
which denote left, right, front and back joints (figure 19) and let us consider the left joint. From Hook's law 
for shear deformation, we have 

ri = Gyi = GÜLZJL , (24) 
n 

where «; is displacement along the pin of the face sheet's line segments adjacent to the left layer of adhesive 
between the pin and the face sheet, u is displacement of the pin's segments, adjacent to the left layer of the 
adhesive (figure 20, reference [1]). But 

T, = ^-  , (25) 
a 

so 

tx = — (ii. - u) • (26) 



F = 4lb,Ap = 3.4641 x 10~4m2, A, = (-0.0713* + 0.0082)m2, 

Ar = (0.0713* + 0.0022)m2 ,Ab = Af = 0.0063/n 2 , E p = 16.82 x 106 psi, (3g) 

Et = Er = Ef = 7.26 x 106 psi, G = 3 x 106 psi,a = 2 x 10-2 in, 

r] = 3 x 10"3m,—-= 2 x 107 psi. 

Substituting these values into the differential equations (34), (35) and (36), we receive: 

 '■ ! . L. - 5 v 1 o "8 T     > (-**) 
5.2 x 105x - 5.95 x 104 5.8xl03 ' 

Tr 4 - T, - Tr -2Tf 8     » ,4m —± : 1 T——i-=5xio_8r,   ' w 
5.2xl05i + 1.6 x 104 5.8 x 103 

= 5 x 10"87\" • (41) 
It      4-T,-Tr-2Tf 

4.5 x 104 5.8 x 10 3 x / 

To solve these equations by the Runge-Kutta method (of solution of systems of first-order differential 
equations), we reduce them to 6 first-order equations by introducing new variables: 

Old variable New variable Differential equation 

T' * * =y2 

T, y2 

Tr y3 
/ 

y4 

Tf y$ 

Tf y6 

y; =2xl07( 5-2  4-y,-y3-2y 
5.2xl05x-5.95xl04 5.8xl03 

y3 = y4 

y/=2xl07( ^  4-y,-y3-2y 
5.2xl05x + 1.6xl04 5.8X10

3 

v; = 2xio7( Zi_^_4-y.-^-2v5 
     4.5xl04 5.8xl03 

The boundary conditions are (reference [2]): 
?i(0) = y3(0) = v5(0) = 0 , (43) 

>,(/)= y3(0 = y5(0 = o • (44) 
To   solve   these   equations   by   the   Runge-Kutta   method,   we   need   initial   values   of  the   variables 
y2 = Ti' • y 4 = r/.y, = r/ > since Runge-Kutta method works with initial conditions, but not with 

boundary conditions. These initial values can be found such that the solution of the differential equations 
comes out to be satisfying conditions (44). 



Part of the output of a computer program, which solves these equations, is shown below. 
Part of numerical solution of differential equations (42) with boundary 
 conditions (43) and (44)  

integrating from   .0980 to  .0000, printing every   10 steps 

J x 

0 .0980 ■ 
10 .0947 
20 .0918 
30 .0895 
40 .0883 
50 .0878 
60 .0876 
70 .0874 
80 .0872 
90 .0870 
100 .0868 
110 .0867 

h -step of integr.    yl = i; 

.1000000E+00 .0000000E+00 
-.2691254E-03 -.7622472E-01 
-.2917319E-03 -.2745825E+0O 
-.1537361E-03 -.5350708E+00 
-.1009320E-03 -.7181460E+00 
-.2781189E-04 -.8030892E+00 
-.1651931E-04 -.8358908E+00 
-.1877064E-04 -.8667758E+0O 
-.1716804E-04 -.8987339E+O0 
-.1848563E-04 -.9326460E+00 
-.1440521E-04 -.9877183E+O0 
-.7306520E-05 -.1008796E+01 

y2 = r/ 

.0OO00O0E+0O 
.4659644E+02 ■ 
.9209458E+02 
.1351001E+03 
.1616897E+03 
.1734788E+03 
.1779609E+03 
.1821495E+03 
.1864535E+03 
.1909897E+03 
.1982940E+03 
.2010707E+03 

y3 = Tr 

.OOOOOOOE+OO 

.7634816E-01 
-.2759612E+00 
-.5396465E+00 
-.7257701E+00 
-.8123122E+00 
•.8457594E+00 
-.8772659E+00 
•.9098808E+00 
-.9445043E+00 
-.1000763E+01 
-.1022305E+01 

y4 = r/ 

.OOOOOOOE+OO 

.4674134E+02 
.9294297E+02 • 
.1371296E+03 ■ 
.1646288E+03 • 
.1768529E+03 • 
.1815046E+03 • 
.1858536E+03 
.1903244E+03 • 
.1950382E+03 ■ 
.2026322E+03 
.2055202E+03 

y5 = ry y6=r; 

.OOOOOOOE+OO 

.7633841E-01 

.2758437E+00 

.5392343E+00 

.7250640E+00 

.8114486E+00 

.8448317E+00 

.8762762E+00 

.9088252E+00 

.9433771E+00 
-.9995157E+00 
-.1021010E+01 

.OOOOOOOE+OO 
.4672963E+0: 
.9286771E+02 
.1369373E+03 
.1643412E+03 
.1765184E+03 
.1811517E+03 
.1854832E+03 
.1899356E+03 
.1946298E+03 
.2021916E+03 
.2050672E+03 

We see that 

n) at each      step      of     the      integration 
5.2 xWx- 5.95x10' 

« 
4-T,-Tr-2Tf 

5.8 xlO3 

5.2 xl05x +1.6x10' 
-«- 

4-T,-Tr-2Tf 

5.8 x 10j 
4.5 XlO4 

« 
4-T,-Tr-2Tf 

5.8 xlO3 

So , the first terms in the differential equations (39), (40) and (41) can be neglected, and we can set 
T, = T. T ■ I   -    * r    ~    * f 

Now, we have one differential equation 
4(1 -T) 

5.8 xlO3 

with boundary conditions 

= 5xl0"8r 

T(0) = 0,T(l) = - = l 
4 

(in this model applied load F was taken to be equal 1 lb). 
Besides, we have the relation 

r 
T=—=5or. 

a 

(45) 

(46) 

(47) 

So, the solution for the shear stress T(x) is 

T = 5.908 x 10'7 exp(l 17.4*) + 5874exp(l 17.4*) . (48) 

Plot of the function T(x) , equation (48), together with the corresponding plot, obtained from the 3-D finite 
element model #5 with the homogeneous face sheets (solid line), is shown in figure 21. The two plots are 
close enough so that we can conclude that the number of elements in the 3-D finite element model #5 with 

10 



homogeneous isotropic face sheets and, therefore in the 3-D finite element model #4 with laminated face 
sheets (the number of elements in the both models are the same) is sufficient to determine stresses accurately. 

Now we can proceed to the analysis of stresses in the face sheets using results obtained from the 3-D finite 
element model with brick elements and laminated face sheets (3-D finite element model #4). 
The maximum allowable stresses in the face sheets for the graphite-epoxy composite material are (reference 
[3]): 

Tensile strength in 1 direction 
Tensile strength in 2 and 3 directions 
Compressive strength in 1 direction 
Compressive strength in 2 and 3 directions 
Shear strength in 2-3 plane 
Shear strength in 1-3 and 1-2 planes 

219 5x 0 3 psi 

6.35 x 10 3 psi 
246 x 10 3 psi 
6.35 xlO3 psi 

9.8 x 10 3 psi 
12 .6 x 10 3 psi 

where direction 1 is along the fibers, direction 2 is perpendicular to the fibers in the plane of a ply, and 
direction 3 is perpendicular to the ply. 
Stress distribution in the face sheets was studied under different tensile and compressive loads. The resulting 
plots and numerical data are shown in figures 22-28. We see that: 
1) Variations of stresses in the face sheets, in their planes (in xy- planes) are such that the stresses reach their 
maximum values near the pins and decrease very rapidly away from the pin. This is seen in figures 22, 23, 24, 

which show the variations of stresses G xz, G z, G x in the y-direction in the middle ply of the face sheet. 

From this we conclude that the damage of the face sheets, if it occurs, can be localized only in a small vicinity 
around the pins (within a distance of 0.02 inches from the pins). 

Maximum values of stresses Gxz and G     in the face sheet, occurring in the elements adjacent to the pin and 

in the upper plies (Table 2), are 1.8 x 103 psi and _ i .g x i o 3 p s i ■ These values do not exceed the 

corresponding maximum allowable values: 2 .6 x 1 0 3 p s i and 9 .8 x 1 0 3 p s i -hi addition, from Table 1, 
(which shows the maximum values of stresses obtained from the 3-D model with the pin and truss elements) 

one can observe that the maximum values of stresses Gxz and G   , due to the global bending of the plate, 

are very small. Therefore, the FE models allow us to conclude that delamination of the face sheets, which can 
be caused by these shear stresses, probably will not occur before buckling of the pins. However, if the pins 
are shorter(i. e. the buckling strength is higher than 4.65 lb, the delaminations are more likely to occur before 
buckling). This conclusion is confirmed by experiments. 

2) Stresses in the face sheets decrease from the upper to lower plies (figures 25-28). 
The values of the stresses under the buckling load of the pin (F=4.69 lb) in the first four plies of the face sheet 
adjacent to the pin, where the stresses are the highest, transformed to the material coordinate systems of each 
ply, are shown in Table 2. Comparing stresses from Table 2 with the maximum allowable stresses (page 16) 
one can observe that, before buckling of the pins, the following modes of failure can occur: 
a) failure of the adhesive, connecting the pins and the face sheets, in the first ply, due to the shear stress in the 
adhesive ( maximum shear stress is approximately 3000 psi (figures 25, 26), the corresponding strength is 
2600 psi); 
b) breakage of the adhesive connecting the pins and the face sheet in the first ply by the tensile stress normal 

to the surface of the pin (the maximum stress normal to the surface of the pin is approximately 3500 psi 
(figure 28), the corresponding strength is 2600 psi); 

11 



c) stresses (7        and Gu in the first ply (Table 2) exceed their maximum allowable values (6350 psi). 

Since these high stresses are localized only in the first ply and in the small vicinity around the pins, and since 
experimental data did not show damage of the face sheets due to these stresses, this mode of failure is ignored. 

REFERENCES 
1. Brush, D. & Almroth B. " Buckling of Bars, Plates and Shells" , McGraw-Hill, New York, 1975 
2. Rzhanitsyn, A. R. "Built-up bars and plates" Moscow: Stroiisdat, 1986 
3. Reddy, Y. S. N. & Reddy J. N. "Linear and non-linear failure analysis of composite laminates with 
transverse shear." Composites Science and Technology, Vol. 44, pp. 227-255 (1992) 
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Figure 1 
Global (X,Y) and Material {x'j') Coordinate Systems 
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Figure 3 

Plan View of the Typical Area of a Face Sheet 
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Figure 19 

Diagram for Analytical Calculation of Shear Stress on the Surface of the Pin in the 
Face Sheet 



Figure 20 

Analytical model 

^•ce j/ee£ 

cuJJizsive. 



Figure 21 

Shear stress at interface of pin and facesheet from FE and analytical models (to the right of th pin) 
4500 K ' 

0 0.01       0.02      0.03      0.04      0.05      0.06      0.07      0.08      0.09       0.1 
distance along the pin 



JO 

C .o 
"5 

a>   >- 

CO 

S 
GO 

c o 

'S 
> 



<0 

JO 

u 
•5 
.g 
c .o 
O 

c 

CO 

£ 
o 
e .o 

> 

«UU((« 



-I 1 r 

a, 

t3 

i 
to 

tu 

c 
.o 
o 
.s 

I 

5 

00 

a o 

> 

eo 4J u c a a 



Figure 25 

3000 
shear stresses in elements adjacent to the pin (to the right of the pin) 

0.01      0.02      0.03 0.04      0.05      0.06 
distance 

0.07      0.08      0.09       0.1 



Figure 26 

-500- 

w -1000 

<0 

« 

(0 -1500- 

-2000 - 

-2500 

shear stresses in the elements adjacent to the pin (to the left of the pin) 

0.05 
distance 



Figure 27 

stress sigma_zz in elements adjacent to the pin (in global s.c, to the left of the pin) 
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Figure 28 
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Table 1 

Suntnary of Stresses in 3-D nodel with Plate and Rod Elements 

Stress-XX Stress-XY    Stress-YY    Stress-XZ Stress-YZ    Stress-ZZ 

996 1843                  969               1467 1852               1327 
Maximum      2.133E+03 1.975E+02     1.132E+03    1.608E-03 6.465E-04    3.053E-09 

1467 9«                  767               1841 1737               1660 
Minimum    -1.552E+03 -2.902E+02  -3.786E+02 -1.799E-03 -1.015E-03 -5.142E-09 

Average    -1.238E+01 3.961E+00 -3.374E+00 -3.056E-05 -1.203E-06 -1.104E-10 



I 
1 Table 2 

Stresses in plies of face sheets in 
material coordinate systems of each ply 

i                1 
First Ply (0 degrees) 

Left Right Front Behind 

Sigma_xx 9.4E+03 -2.0E+04 -2.6E+03 -2.6E+03 
Sigma_yy -9.4E+03 -3.5E+02 -2.3E+03 -2.3E+03 
Sigma_zz -8.3E+03 -8.6E+02 -1.5E+03 -1.5E+03 
Sigma_yz -2.8E+01 2.3E+01 -1.3E+03 1.3E+03 
Sigma_xz -1.5E+03 3.4E+03 8.2E+02 8.2E+02 
Sigma_xy -5.3E+01      1.7E+01 9.0E+02 -9.0E+02 

!           - 
I 
I Second PI] f (90 degrees) 
i 

Left           Right Front Behind 

Sigma_xx -1.4E+03I   -2.3E+02 -5.9E+03 5.9E+03 
Sigma_yy 1.5E+02 -1.2E+03 -2.3E+03 -2.3E+03 
Sigma zz -7.0E+03 -8.8E+02 -1.3E+03 -1.3E+03 
Sigma_yz -1.2E+03!    2.4E+03 6.5E+02 6.5E+02 
Sigma_xz 1.8E+03I   -3.3E+01 2.2E+03 -2.2E+03 
Sigma_xy ^AE■^03    -2.3E+01 -7.5E+02 7.5E+02 

! i 

i ! 

• Third PLy (+45 degrees) 
!              ] 

Left           ; Right        | Front        ! Behind 
Sigma_xx 1.4E+03    -1.4E+03 2.4E+03,   -2.4E+03 
Sigma_yy 2.8E+03i   -2.0E+03     3.4E+03|   -3.4E+03 
Sigma_zz -6.2E+03    -5.5E+02J   -1.3E+03;   -1.3E+03 
Sigma_yz -1.8E+03:    2.1E+03J   -1.9E+031    3.0E+03 
Sigma_xz 3.9E+02     1.3E+03!    3.0E+03|   -1.9E+03 i 

Sigma_xy 3.5E+02;   -7.3E+02)    1.0E+02!   -1.0E+02 I 

1                                                                              '                         ■                        ! 

!          ;                    ! 
Fourth Ply (-45 degrees) I 

i                j                I 
Left           ; Right       ! Front        | Behind 

Sigma_xx 2.9E+03!   -3.3E+02 -3.4E+03 3.4E+03 
Sigma_yy 1.6E+03j_  9.0E+01 -2.1E+03 2.1E+03 
Sigma_zz -5.0E+03I   -4.9E+01 -1.4E+03I   -1.4E+03 
Sigma_yz 6.5E+02     1.6E+03 2.9E+03J    2.9E+03 
Sigma_xz -1.3E+03;    1.5E+03 -1.7E+03J   -1.7E+03 
Sigma_xy -3.0E+02!   -7.1E+02 I.OE+O2I   -1.0E+02 
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FINITE ELEMENT ANALYSIS OF Z-PIN SANDWICH PANELS AND 

COMPARISON TO FAILURE MODES FOUND IN THE 

EXPERIMENTAL PHASE 

1. INTRODUCTION 

In this section, a quasi- nonlinear procedure is developed to analyze the progression of 

failure under static loading conditions. From the experimental observations (attachment 

II and III), the failure scenario is very complex in these sandwich panels. Yet, a simple 

technique has been developed that uses the NASTRAN program. The main feature of 

this technique is to impose all of the failure phenomena to the pins themselves. The 

authors do recognize the fact that the failure modes are inherent to the global sandwich 

construction. This means that the face sheet must be an integral part of the failure 

process. Thus, to determine the failure loads, some of the experimental observations and 

the analytical results developed in attachments IV-VII are incorporated. However, these 

features are included in-conjuction with the failure of the pins in a method based entirely 

upon the pin's stiffness and resistance. Therefore, two pin force functions are used in 

representing two types of failure modes. These modes have been developed and 

incorporated in the determination of the load deflection characteristics. The first failure 

mode considered is pin buckling, and the second mode of failure is pin push through. 

Results are compared with those obtained from the experiment. 

2. SANDWICH PANEL SPECIFICATIONS 

2.3 Dimensions (Fig. 1) 

3.00inx3.00inx0.500in 

The panel consists of two face sheets and pins.   There are six input parameters which 

determine the stiffness and geometry of the panel. They are: 

1. Face Sheet thickness, (0.087 in) 

2. Total Panel Height, (0.500 in) 

3. Panel length(note that panel specimen is a square) 



4. Pin diameter, (0.020 in) 

5. Pin orientation angle(with vertical axis), (20°) 

6. Pin separation distance, (0.100 in) 

7. The load position is shown 

2.2 Face Sheet Construction 

16-ply Carbon fiber/ graphite epoxy resin 

Approx. ply thickness, 0.005 in 

Face Sheet thickness, 0.087in 

[0/±45/90]2S ply orientation 

2.3 Pin/Truss Geometry 

Pins are fabricated from stainless steel. Pin angle orientation for this analysis was 20 

degrees from the vertical axis. The diameter of the pin is d=0.020in. Therefore, the 

cross-sectional area and moment of inertia of the pin can be determined: 

_7id2      7t(0.020in) 

~4~^ 4 

2 

Apin = ^f-=> •-V—-—V = 0.000314in2 (2.1) 

7i   ,      «(0.010 m) q    . 
I = -r4=>-^ ^- = 7.85xl0_9in4 (2.2) 

4 4 

7i    ,      7i (0.020 in)4 ,    . 
J =—d4=>-^ ^- = li7xl0-8in4 (2.3) 

32 32 

For plain carbon steel, the following material property values were used: 
lbs 

E = 3.0x107 -^(Modulusof Elasticity) 
in 

lbs 
G = 11.5 x 10° —z- (Shear Modulus) 

in 
v=0.292(Poissons' Ratio) 



3. FINITE ELEMENT MODEL SPECIFICATIONS 

3.1 Finite Element Software/Hardware 

The finite element software used is MSC/NASTRAN (V68.2) and the results are verified 

by using ASTROS. This research was completed using a UNIX Main Frame and a SUN 

Sparc 10 Workstation. 

3.2 Elements Used 

The upper and lower face sheets are modeled using CQUAD4 shell elements. Plate input 

parameters for the CQUAD4 elements include element identification number, property 

identification number and grid point identification numbers of four connecting grid 

points, where Gl, G2, G3 and G4 are identified sequentially around the circumference of 

the element as shown in Figure 2. Here MCID denotes a material coordinate 

identification system. Geometric dimensions of the face sheet are provided by using the 

PSHELL card, and the material properties are specified using a MAT8 card. MAT8 

defines the material property of an orthotropic material for shell elements. Since the face 

sheet is made up of laminated materials, equivalent material properties are determined. 

The method of calculating the equivalent orthotropic material properties is discussed in 

detail in Attachment VII. 

The "truss" pins are modeled as CROD pin elements. The CROD element defines a 

tension-compression element. Input parameters for the CROD elements include element 

identification number, property identification number and grid point identification 

numbers of 2 connecting grid points, Gl and G2 as shown in Figure 3. Again, geometric 

and material properties for the rod elements are provided through PROD and MAT1 

cards. MAT1 defines the material property for linear, temperature-independent, 

isotropic materials. 



3.3 Mesh 

The mesh of the upper and lower face sheets is geometry dependent. The pin orientation 

angle and pin separation distance or space between the pins determine the number of 

pins in a given geometrical square. The pin orientation (of 20 °)created "groups" of four 

pins. These groups created three different sized meshes, the first being 0.090 x 0.090 

(based on the pin angle), in the second 0.090 x 0.163in (based on the pin angle and the 

space between the pins) and the third being 0.163 x 0.163 in (based on the space between 

the pins). Figure 4 depicts the respective QUAD4 element sizes. Convergence studies 

concluded that decreasing the mesh size(refining model) showed no enhancement or 

benefit to the analysis, but substantially increased the CPU analysis time. 

3.4 Finite Element Model 

The finite element model was created by developing a FORTRAN pre-processor to 

create all the QUAD4 shell and CROD pin elements. The description and usage of this 

specific preprocessor for Z-pin sandwich is discussed in detail in attachment IX. The 

developed finite element model consist of 1058 QUAD4 elements and 528 rod elements 

with 1152 node points. 

3.5 Boundary Conditions 

The FEA model analyses the panel using simple supports on all four sides. All 

transverse displacements are set to zero at the neutral axis. 

4.   FAILURE MODES 

In this section, a detailed discussion about the failure modes is provided. As mentioned 

earlier in the introduction, the development of these failure modes is phenomenological 

and is based on the experimental and analytical observations. Two different failure 

modes (both are pin oriented) are considered. Pin buckling is the first failure mode while 

the pin piercing the face sheet or pin push through is the second failure mode. 



4.1 Pin Buckling 

Buckling is a failure mode in which a pin has its equilibrium disturbed. The pins will 

return to their original equilibrium(position) as long as P(applied axial load) does not 

exceed a pre-determined value Pcr, which is defined as the "critical load". However, if 

P>Pcr, the pin will move away from its original position. The system is "stable" if its 

original equilibrium is maintained, if P>Pcr, the system is "unstable" and buckling 

occurs. The pin buckling analysis consisted of the following: 

4.1.1 Critical buckling load 

The critical buckling load was determined using a modified Euler equation. The 

modified equation was required to account for the end moments and rotations (a detailed 

discussion is provided in attachment VII): 

^(A + 0.4)2 7t2EI 
cr"(A + 0.2)2 ,2     j2 

v2 

P    = 
(1.8909 + 0.4)  7t2 3.0xl07lbs 7.85xl(T9in4 

(1.8909+ 0.2)2   1 in 

1 A 
(4.1) 

0.476W 

Pcr = 10.461bs 

where E = Youngs' Modulus 

I = Moment of Inertia 

1 = length of pin 

It is assumed that the phenomena of pin buckling is an isolated phenomena and does not 

interact with any other failure. But in reality, this may not be true. Some delaminations 

may result in the face sheet because of the buckling of the pin. Also, it is assumed that 

the pin will not carry any load once it buckled. This also may not be true as the pin may 

be able to carry some post buckling load. That is, once the axial load in any pin exceeds 

the critical buckling load, it is assumed that the pin is buckled and that the pin no longer 



is a load carrying structural member. Using this assumption,    a quasi- nonlinear 

procedure is developed and is discussed in the next section. 

4.2 Pin Push Through 

The second failure mode considered is the pin push through. In this failure mode, the 

portion of the pin that is inside the face sheet will try to pierce through the face sheet. In 

principle, the phenomena of pin-push through is due to the shear stress and peeling 

stress distribution across the thickness of the face sheets and along the length of the pin 

as shown in Figure 25-28 of attachment VII. This phenomena is characterized by the 

initiation of the breaking of the bond (debonding) between the pin and the face sheet due 

to the shear and peeling stresses in the face sheet. When the stresses in the face sheet 

exceeds the allowable (shear stress of the adhesive that is bonding the pin and the face 

sheet), then the phenomena of push through results. That is, an accurate estimation of the 

stress distribution along the embedded pin within the face sheets is required to 

determine the initiation and progression of the pin debonding phenomena. This 

debonding development also leads to ply delamination. This requires a nonlinear 

modeling of the face sheets using very expensive three dimensional brick elements (like 

in attachment VII). 

However, a reasonable estimate of the load at which the pin push through 

phenomena will occur can be determined using the current finite element model (two 

dimensional shell and rod elements) itself. This is possible if a relationship between the 

load in the pin and the stress distribution in the face sheet can be determined. If this 

relationship is established, the analysis can be performed in the same manner as the pin 

buckling, that is determining a critical axial load in the pin which will produce pin-push 

through of the face sheet. The relationship between the allowable axial load in the pin, 

pin geometry and face sheet thickness can be formulated as below. Referring to Figure 

5, the pin surface area can be calculated as 27tr with r being the radius of the pin.  The 

bonded length of the pin and face sheet can be determined as R = , where L is the 
COS0 



thickness of the face sheet and    9 is the pin orientation angle. Multiplying by an 

allowable shear stress, the critical load can then be determined by 

Pcritical = 27I\^^jT allowable (4-2) 
,COS0 

Results shown (figures 25-28)in attachment VII using three dimensional brick elements 

indicate the generic force intensities along the length of the pin within the face sheet 

when an axial load is applied to the pin. These studies show that the stress distribution is 

not uniformly distributed, but rather a very small length of face will have a large stress. 

Also, it can be seen that the development of maximum peeling stress is on the opposite 

end to the maximum shear stress. This peel stress (which could just as well show up as 

a crushing stress on the opposite side of the inclined pin), the authors feel, leads to the 

true representation of the failure in the face sheets based on experimental observations. 

From the microscopic photographs of the specimens just prior to failure(attachment II 

and III), delaminations and cracks parallel to the pin can be observed. Also, a certain 

amount of debonding of the pin can be noticed. From attachment IV, where analytical 

solutions to the three dimensional stress distribution are provided, in-plane stress is 

observed to be developing due to a boundary transverse load intensity; which is a similar 

scenario to the loading brought about by the crushing stress; which is ten times larger 

than the applied transverse (peeling) stress at a point in the sandwich plate (figure 9 of 

attachment IV). This in-plane normal (crushing stress) is responsible for the 

delaminations and cracks parallel to the pins without a total pin push through. This 

failure mode is truly three dimensional and will not be developed further, but can be 

used to intimate the features of delamination, debonding of the pin and localized intraply 

failure. As a simple attempt, the authors have developed a debonding failure mode. 

The debonding process was attributed to the shear and peeling stresses. 

Complete debonding of the pin from the face sheet lead to the push through phenomena. 

That is the process of the pin push through is characterized as a series of adhesive 

debondings due to shear and peeling stresses, and when all the adhesive along the length 

of the pin is debonded, the pin will start pushing through the face sheet. Thus, the axial 

load in the pin that can cause all the adhesive to break can be termed the pin push 



through load. In addition, the region at which the maximum bonding shear stress is 

present also lead to delaminations. From the generic shear stress and peeling stress 

distribution and the experimentation, it is assumed that at each adhesive break, the pin 

will be debonded from the layers of the face sheet along with creating a delamination 

and a free surface . This delamination appears to occur at intervals of two plies. An 

equivalent stress distribution is assumed along the pin based on the generic stress 

distribution curves as shown in Figure 6. It consists of two triangles on either end of the 

pin, one representing the shear stress distribution and the other, peeling stress 

distribution. Also, the load in the pin is determined by modifying equation (4.2) as 

P = 2 ji r A/ cos 9 (4.3) 

A is the area under the shear stress curve. The allowable strengths of the adhesive in 

tension and in shear are 6500 psi and 9800 psi (attachment VII) respectively. Figure 6 

shows the starting stress magnitudes from attachment VII which are then used for 

proportioning. By using linear proportions, from the magnitudes of peeling stress and the 

shearing stress, it appears that the first debond is due to the peeling stress. That is, when 

the maximum peeling stress becomes 6500 psi ( maximum shearing stress becomes 4500 

psi), first debond or pulling away of the adhesive from the pin occurs within the top two 

layers of the face sheet. Then the overall length of the pin bonded to the face sheet 

becomes equal to L , = L - 2 layer thickness. Here L is the original length of the pin and 

L[ is the length of the pin after first adhesive debond. At the free surface, peeling stress 

is again developed. The next debond occurs when this peeling surface in the pin length 

of Lt reaches 6500 psi. By then, the maximum shearing stress on the other end of the 

pin reaches a magnitude of 9000 psi. At this second peeling stress level, the adhesive 

debonds further( 2 more layers). The third breakage is due to the shearing stress since it 

reaches the allowable stress of 9800 psi before the peeling stress develops to its critical 

value of 6500 psi. This third stage causes further debonding of 2 more layers of face 

sheet. This process is continued until the pin is totally debonded. Then the phenomena 

of push through occurs. The various steps of debond can be described in the following 

Table 



Stage   No of layers     failure mode     Area under 

of pin bonding the shear triangle 

1 18 

2 16 

3 14 

4 12 

5 10 

6 8 

7 6 

8 4 

peeling 39.15 

peeling 36.0 

shear 5.6 

peeling 27.0 

peeling 22.5 

shear 3.2 

peeling 13.5 

peeling (final) 9.0 

Pin load based on the 

shear debonding 

stress(lb) 

2.618 

2.407 

0.374 

1.805 

1.504 

0.214 

0.903 

0.602 

10.427 lb 

The pin push through phenomena can be characterized by 8 steps in this 16 layer face 

sheet. In the first load step, the bond up to 2 ply layers is broken away from the pin, and 

a delamination resulted in the 2 nd layer (figure 7). In the second step, the breakage 

progressed to the 4 th ply and a delamination results. In the third step, the debonding is 

up to the 6 th ply layer and again a delamination results. This activity continues through 

eighth step and the adhesive is completely broken. At each stage, the load in the pin at 

which the debonding occurred was determined using equation (4.3). The pin will be 

completely pushed out of the face sheet when the axial load in the pin is equal to 10.427 

lb. The push through phenomena occurs at a slightly lower load (in the pin) than the pin 



buckling.   In theory, if  the pin does not push through, due to some manufacturing 

anomaly, it will buckle. 

5. QUASI-NONLINEAR PROCEDURE 

To determine the load deflection characteristics as the failures progresses, a quasi- 

nonlinear procedure is developed. In this procedure, only the material nonlinearity is 

considered without considering the resulting geometric nonlinearity(that is the reason 

why this procedure is termed quasi-nonlinear). This results in an error because changes 

in the geometry associated with failure are not taken into consideration. That is, when a 

pin fails, there will be changes in both the geometrical and material properties 

corresponding to that fail. In this analysis, the change in material properties is accounted 

for by changing the material property card while the change in the geometry is not 

accounted. The outline of the procedure is as below: 

(1) Initially, a load is applied to the plate of given geometry and boundary conditions. 

This load application results in the development of forces in the pin (CROD) 

elements and the face sheet (CQUAD4) elements. 

(2) Increase the load in magnitude until the force in any one of the pins is equal to the 

failure load of any of the pin. The failure load can be either a buckling or push 

through load. Since it was established that the pin push through occurs ahead of the 

pin buckling, for all practical purposes, the failure load refers to the pin push through 

load. Since we are using linear analysis, the load to be increased can be estimated 

fairly accurately from the results of step 1. 

(3) Identify the pin that failed. In fact due to the symmetry of the loading and geometry 

of the plate, instead of one pin, a group (4) of pins will fail at the same time. 

Reduce the stiffness of the pins that failed. This can be achieved by changing the 

10 



material properties of the pins that failed. In all the work that is carried out in this 

report, the Young's modulus of the pins were reduced to 0.01 percent of the original 

Young's modulus whenever they failed. That is, this pin is physically present to 

retain the shape of the plate but it can not carry any load. 

(4) Apply the next increment or step of load (size of which is based on the next failure 

load and is determined by trial and error). The stiffness of the plate is different from 

that of the earlier load due to the failed pins. Also, it should be remembered that all 

the pins are preloaded (because of the application of earlier load) before determining 

the next failure load. That is, in this case only the incremental load is applied and a 

resultant incremental displacement has to be determined. Again, pins will fail in a 

cluster similar to the earlier case because of the same reasons. Graphically, the 

procedure can be described as in Figure 8 while in mathematical form, this 

incremental approach can be described as 

[K]iAQi=Fr[K]i.,Qi.1 (5.1) 

Qi = Qi-i+AQi 

where / is the load increment number and Q is the displacement, K is the stiffness and F 

is the resultant force, AQ is the incremental displacement. Based on this equation, this 

procedure can be explained as follows. 

To start with, the load increment i is equal to 1, applied load is equal to F! and Kj.j is 

equal to zero. Initial increment of displacement can be obtained as 

[K],AQ, = F, (5.2) 

Qi=AQ, 

In the next step, an increment of load AFj is applied. Then the new total load applied is 

equal to F2= Fi+AFj. Then the incremental displacement can be obtained from 

[K]2AQ2=F2-[K],Q, =AF, (5.3) 

Q2 = Q,+AQ2 

11 



This process is continued until a significant number of pins failed. Thus, by using this 

procedure, the progression of failure can be determined. 

6.   RESULTS 

The focus of this research is to develop analytical tools to analyze Z-pin sandwich 

panels. Hence, initially, it was attempted to see whether any similarities can be observed 

that are similar to the Nomax sandwich panels which are modeled as plate elements. The 

basic assumption in that modeling was that there is no significant through the thickness 

direct strain. To check whether such an assumption is valid, a load deflection curve was 

generated for the top and bottom face sheets.. The load vs displacement plots for the 

finite element model of the upper and lower face sheets are shown in Figure 9. This plot 

shows that the lower and upper face sheets have different load displacement 

characteristics i.e. there is a significant through the thickness strain between the face 

sheets. Thus, it would be erroneous to model the Z-pin panel as a plate. It has to be 

modeled as a three dimensional structure. 

Next, the progression of failure in the pins is determined through a number of 

NASTRAN iterations using the quasi-nonlinear approach. The approximate run time for 

each iteration of the model was approximately two hours. The actual central processing 

unit(CPU) time was 22 minutes. After each iteration, the NASTRAN output file was 

read by a developed FORTRAN batch post processor program which searched for the 

axial load in each of the 528 CROD elements and saved this information. The 

information saved included the CROD element number and the axial load in each 

element. The load in each iteration was then added by the FORTRAN program and the 

cumulative axial load in each member in each pin is determined. At this point, the 

number of pins which failed could be determined by comparison with the critical failure 

load(in this case it happens to be the pin push through load). The finite element model 

was then modified by reducing the stiffness. Stiffness was reduced by adding a new 

material property with the same moment of inertia and Poisson's' ratio(v) but changing 

the Youngs' Modulus(£) and Shear Modulus(G) of each failed pin. These values where 
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changed from 3.0x10   psi and 1.15x10   psi to 10.0 psi respectively.   Essentially this 

changed the pin from a "load" bearing member into a "non-load" bearing member. 

The finite Element results using the quasi-nonlinear approach is shown 

in Figure 10. Also shown are the experimental results. This load vs displacement plot 

shows the displacements of the lower face sheets. The finite element model results match 

reasonably well with the experimental results. 

7.   CONCLUSIONS 

The following conclusions can be drawn from the work presented in this section. It 

should be emphasized here that these conclusions are valid only for this face sheet and 

pin combination. Changing the orientation of the pin may lead to different conclusions. 

This is due to the fact that the core (pins) is discrete and the results depend on this 

discreteness. 

(1) A plate approximation is not valid in modeling Z-pin sandwich panels 

(2) A quasi-nonlinear approach can be used to determine the load deflection 

characteristics considering the progression of failure 

(3) Pin push through produces a failure load less than a pin buckling scenario. It appears 

from all the evidence that another mode of failure exists that is more complex than push 

through or buckling. This was alluded to in the previous discussion and requires a 

complete three dimensional face sheet consideration. 
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Figure 3: Description of the CROD element 

Figure 4: Element sizes of the QUAD4 elements 
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Figure 5: Pin orientation with respect to the face sheet 

Figure 6: Equivalent load distribution along the pin 

Figure 7: Mechanism of pin debond (push through) 
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Figure 8: Schematic of the quasi-nonlinear approach 
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Figure 9: Load deflection curves of the top and bottom face sheets 
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OPTIMIZATION OF Z-PIN COMPOSITE SANDWICH PLATES 

1. Introduction 

In this section, an effort was made to determine the optimal pin angle for the z-pin sandwich 

plates using the Wright Lab developed commercial software, ASTROS. ASTROS's internal 

optimization capabilities are size, not shape based. Thus, it's unable to directly determine the 

optimal pin angle for a given Z- pin configuration. Rather, for a particular pin angle, it can 

determine the minimum weight through a minimum necessary cross sectional area. However, by 

repeated weight optimizations using ASTROS, the pin angle can be optimized. This is achieved 

by considering a series of possible pin angles (as the design space) and optimizing for the 

minimum weight under given constraints at each of the angles. The angle at which the weight is 

the lowest with all the constraints satisfied, is the optimum pin angle. The constraints include the 

compressive strength of the pin, pull out strength of the pin and the buckling strength of the pin. 

That is, for determining the optimum pin angle dozens of ASTROS runs are required. 

Developing an ASTROS model using conventional preprocessors like I-DEAS is time consuming 

for each angle of the pin. It was clear from the outset that hand generation of the ASTROS data 

decks was completely impractical for the number of configurations that are required to be looked 

at. That led to the development of a preprocessor program that can generate the ASTROS output 

instantaneously once the pin angle is specified. The initial portion of this section is dedicated to 

the description of the preprocessor that is developed for generating the ASTROS input deck. For 

the reader interested in the optimization studies, this section can be skipped completely. In the 

next section, results obtained from the number of ASTROS runs are discussed. Each set of runs 

produced interesting results leading to further analysis. The base configuration used, problems 

associated with accurate analysis, and the solutions to these problems are discussed. 

2. Development of the Preprocessor 

A custom pre-processor was designed to build the necessary Bulk Data cards for modeling the Z- 

pin composite plates. The program was designed to be generic and produces output that works 

equally well in NASTRAN, ABAQUS and ASTROS. 



Below is an example input file for the preprocessor "Build". Build looks for a file "zconfig.dat" 

containing the information below. 

4.00 blength = Sandwich plate length (x) 

4.00 bwidth = Sandwich plate width (y) 

0.5 bthick = Sandwich plate thickness (z) 

21.006784215383 a  = pin angle (0=vertical) 

0.166667 ratb   = ratio of empty space to pin coverage 

1 NA     = number of elements in pin covered area 

1 NB     = number of elements in empty space 

0 iconst = constant pin spacing flag 

0 ibuck  = buckling constraint bulk flag 

0 ibeam   = replace rods with beams flag 

0 idistrib= distributed load flag 

Each term has a short explanation beside it. It is not necessary that this text be in the file; the 

program does not read or do anything with it. It's there to help the program user. Each term will 

be explained in further detail during the discussion of the program operation that follows. 

The first three terms in the data file are blength, bwidth, and bthick. These are the dimensions of 

the sandwich plate in consistent units. The pin angle, a, is the alignment, measured from vertical, 

of each pin. It is given in degrees. These four pieces of data are enough to start the program. 

Referring to figure 1, the horizontal distance covered by a single pin, a is 

a = bthick tan (a) 

The next item in the configuration file is called ratb. This controls the amount of space between 

one pin and the next pin in the same direction. If we define b as the empty space between pins 

then 

b = ratb * a 

or if you prefer, the distance between the base of one pin and the next is a+b. For all of the 

analysis done to date the value of ratb was set to 1/6.   That is, the space between the pins is 



dependent on the orientation of the pin. This ratio of 1/6 value was chosen based on the design 

supplied by the Foster -Miller Inc. Instead, if a constant spacing (independent of pin angle) is 

used between the pins, the optimization becomes trivial. By choosing the iconst option, this 

preprocessor can develop bulk data deck for this arrangement of pins also. Further examination 

of this parameter might be fruitful. 

At this point, Build is able to break the plate into unit cells. A top or plan view of a generic unit 

cell is shown in Figure 2. The large square has dimension a by a. A pin runs diagonally along 

each edge of this square. The other three rectangles are the space between pins. This generic cell 

is modified depending on where in the structure the cell is. No "space" cells are used at the 

outside edges of the full structure. Also, no pins run along the actual edge of the structure. 

Figures 3 & 4 show a square plate broken into 4 and 9 unit cells. These two figures correspond to 

the configurations when the total number of unit cells are even or odd. Significance of this is 

described later. Typically, these unit cells are quite large for the plate dimensions studied. Thus, 

an integer number of cells will not, in general, be an exact match for the desired length and width 

dimensions. Thus, Build picks an integer number of cells that comes closest to the desired 

dimensions. Figure 5 illustrates the result of this compromise fit. 

The next two parameters, NA and NB, allow the user to break the face sheet elements into sub 

elements. Use of NA and NB facilitate the development of finer mesh for the face sheet. NA 

controls how many elements make up each distance a. NB breaks each distance b into that many 

elements. Figure 6 illustrates how a 2x2 cell bar is broken up for NA=2 and NB=1. Note that not 

only are the large a by a squares broken into 4 QUAD4's, but also the long, thin a by b 

rectangular sections are broken into 2 QUAD4's. 

The last four entries in the data file are flags for various program options. Their values should 

either be 0, meaning off, or 1, meaning on. The flag "iconst" is used to keep the unit cells a 

constant size. If this flag is on, Build will change the empty space between pins, b, so that the 

unit cells for the configuration have the same dimensions as that of the angle configured within 

the FORTRAN program. This basis angle is currently set to 50 degrees. Another way of looking 

at this flag is that it keeps the number of pins in the structure constant. If it is desired to change 

this setting, the variable in question is "a ". The flag "ibuck" is used to generate ASTROS 

buckling constraint cards. This adds a DCONBKE card for each pin to the bulk data. Thus far, 
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we have been unable to get ASTROS to deal with this constraint reliably. No results will be 

presented for this case. The "ibeam" flag controls the modeling of the pins. If the flag is off, the 

pins are modeled as rods. If the flag is on, the pins are modeled as beams. The "idistrib" flag is 

used to generate FORCE cards. If it is on, it will divide the internal variable "totalload" by the 

number of pins whose top end does not lie on an edge. It will then generate appropriate FORCE 

cards to apply that portion of the load to each such pin. 

Finally, Build will generate boundary condition cards for all the edge nodes. These nodes are 

constrained against translation, but allowed to rotate freely. There are a number of things that 

Build does not do. It does not generate property or material cards. Nor does it generate the 

header cards that control the solution. In general, these cards are few in number and do not vary 

from analysis to analysis. Thus, files are created by hand that are to go before and after the 

program generated bulk data. A script is used to run Build and then combine the header file, 

Build's output, and the tail file. In our case we have two scripts: one builds an ASTROS input 

deck, and the other, a NASTRAN deck. 

3. Plate Optimization 

After the generation of the code, a test case of a 4" square plate with a 1/2" thickness was 

chosen. The plate was loaded with a concentrated 100 pound center load. As there is never a 

node at the center of the plate, this was modeled as four 25 pound loads at the nodes surrounding 

the center. 

ASTROS was used to determine the minimum necessary pin cross sectional area subject to one 

of three different constraints. The first constraint used was termed the "compression" constraint. 

Each pin was restricted to have no more than a fixed stress in compression. (The stress chosen 

was 130,000 psi, a typical value for titanium.) 

The second constraint was designed to vary with critical stress with the value of the length of the 

pin. In a very loose sense, this models the variation in the contact length between the pin and the 

face plate. Thus, this constraint is termed the "pullout" constraint. In our earlier back of the 

envelop studies and in Attachment VIE, it was shown that the force responsible for the pull out is 

the shear stress along the length of the pin and can be written as P „,puu- 2 nr h/cos (a) t aOo- 



Here, r is the radius of the pin and h is the thickness of the face plate and i aUo is the allowable 

shearing strength. When the pin is vertical, oc= 0 and the pull out strength Pcr>o=27trhTau0. 

That is, for any arbitray pin angle, the critical value varies inversely with the cosine of the pin 

angle: Per>puU = P „,o / cos(a). 

The third constraint varies inversely with the square of the length of the pin. It is intended to 

roughly model the buckling behavior of the pin and is thus called the "buckling" constraint. 

Similar to the pull out constraint, the force responsible for the buckling of the pin can be written 

as P cr,buck= n El cos 2 (a) fh 2. Here, El is the bending stiffness of the pin. When the pin is 

vertical, a= 0 and the buckling strength P „t 0= n 2 EI/h2. For any arbitrary orientation of the 

pin, the critical load is Pcr,buck = P cr,o cos2(a). 

It must be acknowledged that both of the latter constraints are no more than back of the envelope 

approximations to the actual behavior they are named for. Nevertheless, they allow one to look 

for general trends and gain understanding of the behavior of the structure. 

After performing its optimization, ASTROS outputs one value, the optimal fraction or multiple 

of the original area, i.e. A/A0. Thus, if n is the number of pins, and t is the bar thickness (bthick 

to the Build program), the total mass of the pins is: 

m = p n (A/A0) A0 (t/cos a) 

If we note that a number of these values do not vary during a study of the effects of pin angle, we 

can remove the pin density and initial cross sectional area, as well as the bar thickness. This 

leaves just the terms that vary from one design to the next. The remaining terms show the 

behavior of interest and form a relative measure of pin volume. Thus, 

V = (n/ cos a) (A/A0) 

is called the relative volume. This will be the parameter plotted on the results to come. If desired, 

the mass of the pins may be obtained by a simple scaling: 



m = pA0t V 

Figures 7, 8, and 9 show the variation in optimal relative volume with respect to pin angle for the 

compression, pullout, and buckling constraint respectively. It can be seen that on each plot two 

smooth curves and a wildly zigzagging line exist. 

The zigzag lines connect the optimal relative volumes for about twenty values of pin angle. The 

inexact approximation of the bar dimensions as shown in figure 5 was attributed to this behavior. 

It was decided to rerun the analysis, but only with pin angles that produce an exact fit of the 

dimension. Some geometry and algebra leads to the following equation: 

an =tan -'[l/{t(n {r+1} - r )}] 

where / is the length desired, t is the bar thickness (bthick), r is the spacing ratio (ratb), and n is 

the number of cells. For the test case being modeled, the value of n that was of interest varied 

between 6 and 19. 

These new results, unfortunately, are included in the zigzagged portion of the plot. However, if 

the new results are broken into two parts based on if n is even or odd, the two smooth curves 

will appear on each plot. 

The reason for this is related to the loading placed on the plate. It can be recalled that four 25 

pound loads at the four center most-top nodes are applied. Intuitively, one understands that the 

pins closest to the loads will absorb most of the load and, thus, will be the ones important to the 

optimization. 

In figure 3, and in any other case with an even number of cells, the four center nodes are isolated. 

Thus, the four pins that connect to these nodes get little help from their neighbors. Therefore, 

these four pins support most of the applied load, and thus require a large cross-sectional area. In 

figure 4, which represents plates with an odd number of unit cells, the four center nodes have 

neighboring nodes that are very close. Thus, the pins that are loaded are very close to 

neighboring pins who can help out. Thus, a much lower cross-sectional area is required. 



This analysis of the even-odd dependency of the results is born out by the results in figures 7-9. 

The lower smooth curve on each plot is the results for the cases with a pin angle chosen for an 

exact fit and with an odd number of cells. The upper smooth curve on each plot connects the 

exact fitting angle data for even cell counts. These two curves mostly bound the intervening data. 

The small divergence in the zigzagged data are apparently due to the inexact fit problems 

discussed earlier. 

4. Results 

There are a number of factors that compete to form the trends that appear in the results presented 

previously. Among these are the exponential growth in pin counts and the ability of angled pins 

to support vertical loads. 

In this study, space between the clusters of unit cells is set to 1/6 th size of the unit cell. That is, 

the number of pins in a given sandwich plate are dependent on the pin orientation angle. Figure 

10 shows the variation in the number of pins with pin angle. This growth had a large impact on 

the pseudo-point-load results (figures 7-9). In this loading configuration, load is applied at only 

four pints and the pins that are most influenced are the pins close to the application of the load. 

But while doing the optimization, all of the pins were constrained to have the same area. This 

means, pins that do not contribute to the load sharing also are constrained to be of same cross 

section as those that bear the load. That is, the larger the number of pins, the larger the amount of 

excess, unused volume in the pins away from the load. This leads to the conclusion that the local 

loading effects are significantly dominating the process of optimization. To eliminate this local 

loading effect, two more optimization studies are carried out. In the first optimization study, the 

pin number was set constant by keeping the space between the pins constant. This eliminated the 

effect of number of pins but resulted in a configuration which may not be practical. For one 

thing, with this constant pin spacing arrangement, the required pin density at a given pin angle 

may not be possible. As a second optimization study, a uniform loading distribution is assumed. 

This eliminated the effect of local loading effects. The optimization obtained is for a unit cell 

since all the unit cells are exposed to similar loading conditions. As an aside, the growth in pin 

numbers lead to computational difficulties; angles much smaller than 20 degrees required more 

resources in terms of memory than were easily available. 



In the first optimization study, the spacing of the pins was set at that for the 50 degree case and 

fixed. As the angle decreased, the space between pins was increased. Figure 11 shows the results 

for the constant pin spacing analysis. As expected, Pins that are nearly vertical are better able to 

support a nearly vertical load. It is likely that the more angled pin cases would perform better 

under other load conditions. In the second optimization study, the four loads were replaced by 

loads distributed across the entire top face of the plate (other than on edge nodes.) Figure 12 plot 

the variation in relative volume with pin angle for this load case, for each of the three constraint 

types. From this figure, it can be seen that between 20 and 33 degrees, the weight of the 

sandwich panel is lowest and will satisfy all the constraints. 
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Figure 1: Orientation of the Pin 
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Figure 4: 3X3 Unit Cell 
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Figure 5: Error in plate length associated with pin angle 
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